Home Bookmarks Papers Blog

598: Approximation Algorithms in Geometry

Fall 2004

Lecture notes

A more updated version of the lecture notes is available <u>here</u>.

Tue/Thu 16:15 PM - 17:30 SC 1214.

<u>Mailing list</u>

Please register.

In this course, we would cover techniques used in developing efficient approximation algorithms in computational geometry and related fields. Topics covered (would hopefully) include:

- 1. Random sampling: epsilon-net and approximations.
- 2. Discrepancy.
- 3. Embeddings, dimension reduction, JL lemma, Bourgain's embeddings.
- 4. Convex shape approximation John theorem and Dudley theorem.
- 5. Coresets.
- 6. Shape fitting in low dimensions (with or without outliers).
- 7. Fast clustering in low dimensions: k-center, k-median and k-means.
- 8. High dimensional shape fitting.
- 9. Approximate nearest neighbor in low and high dimensions.
- 10. Curve simplification, Frechet distance, and morphing width.
- 11. Approximating the diameter in low-dim.
- 12. Approximating the Euclidean TSP.
- 13. What is dimension? Linear classification and margin.
- 14. Streaming.

Emphasize would be put on open problems, and research oriented activities.

Last modified: Mon Mar 27 13:57:56 CST 2006