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Abstract. The space of persistence diagrams under bottleneck distance is known to be high-
dimensional. Because many metric search algorithms and data structures have bounds that depend
on the dimension of the search space, the high-dimensionality of this space makes it difficult to
analyze and compare asymptotic running times of metric search algorithms on this space. In this
paper, we explore the dimension of a generalization of the space of PDs. We show that for a
class of quotient metrics that includes the bounded persistence plane (i.e., a bounded region of the
plane modulo the diagonal) the metric is close in a Gromov-Hausdorff sense to a metric of bounded
dimension. We also show how to bound the dimension of bottleneck metrics over k-point subsets
of doubling metrics. Finally, we put these together to show that the space of bounded, k-point
persistence diagrams is close to a low-dimensional space.

1. Introduction

A persistence diagram (PD) is a topological invariant commonly used in topological data analysis
(TDA). Ever since their introduction, PDs have been a popular tool to compare the shapes of point
clouds, metric spaces, and real-valued functions.

A significant advantage of PDs over many other topological invariants is that they come equipped
with a natural metric, the bottleneck distance, and thus topological features are rendered not only
qualitative, but also quantitative. This opens the possibility of doing metric analysis on PDs, such
as (approximate) nearest neighbor search or range search.

Many metric proximity search algorithms and data structures have asymptotic running time
bounds in terms of the doubling dimension of the search space [2, 3]. The metric space of PDs
with the bottleneck distance is known to have infinite doubling dimension[4], making it unclear
whether one ought to apply standard data structures such as cover trees[1] or net trees[5] to search
in this space. Although the space of all persistence diagrams is infinite-dimensional, there may
be reasonable subspaces of persistence diagrams that either are or at least behave like they are
low-dimensional. This paper describes some general classes of persistence diagrams that are nearly
low-dimensional in the sense that they are close in Gromov-Hausdorff distance to a low-dimensional
space (see Theorem 5.1). Along the way, we give general techniques for proving quotient metrics are
nearly low-dimensional (Section 3) and a general bound on the doubling dimension of bottleneck
spaces over doubling metrics (Section 4)

2. Definitions

2.1. Metric, Cover, and Dimension. A metric space, X = (X,d) is a set X and a metric d.
The distance between a ∈ X and a set Y is given by d(x, Y ) := infb∈Y d(a, b). The diameter of
a set X is diam(X) = supa,b∈X d(a, b). An ε-ball centered at a, denoted by B(a), is the set of all
points within ε distance of a.

A collection of sets Y is said to cover X if the union of the sets in Y contains X. A cover Y is an
ε-cover of X if every set in Y has diameter at most 2ε. An ε-cover Y of X of minimum cardinality
is a minimum ε-cover and Nε(X) = |Y | is the covering number of X. The ε-metric entropy of X
is defined as Hε(X) = log2Nε(X).

1



The doubling constant, λ, of X is defined as,

λ = max
Z⊆X

Ndiam(Z)/2(Z).

The doubling dimension of X is dim(X) := log2(λ). If dim(X) is finite, then X is a doubling metric.
Throughout this paper, all mentions of dimension are referring to the doubling dimension.

2.2. Quotient Metric Spaces. Let X be a metric space and let Y be a subspace. The quotient
space X/Y = (X/Y, dX/Y ) is defined so that dX/Y ([a], [b]) := min{d(a, b),d(a, Y )+d(b, Y )}. There
also exists a surjective quotient map, q : X → X/Y such that q(x) = [x].

The persistence plane is the quotient of (R2, ℓ∞) modulo the diagonal. A persistence diagram
is a multiset of points in the persistence plane. The dimension is infinite. There is an interesting
observation here: a quotient of two low-dimensional metric spaces can be infinite dimensional.

2.3. Gromov-Hausdorff Distance and Nearly Low-Dimensional Spaces. For metric spaces
P = (P,dP ) and Q = (Q,dQ), a correspondence between P and Q is a relation R ⊆ P × Q such
that for its canonical projections on P and Q, we have πP (R) = P and πQ(R) = Q respectively.
The distortion of R is defined as

distort(R) := sup
(p1,q1),(p2,q2)∈R

|dP (p1, p2)− dQ(q1, q2)|.

The Gromov-Hausdorff distance dGH is a metric on metric spaces defined as

dGH(P,Q) :=
1

2
inf{distort(R) | R ⊆ P ×Q is a correspondence}.

A metric space P is ε-nearly low-dimensional if there exists a doubling metric space Q such that
dGH(P,Q) ≤ ε.

3. ε-Close Quotient Metric Spaces

In this section show how to approximate a quotient space with a lower dimensional quotient
space. We first present a lemma on the dimension of a quotient of a doubling metric modulo finite
subset.

Lemma 3.1. Let X be a metric space with dim(X) = d. If Y ⊂ X is finite, then dim(X/Y) ≤
d+ log |Y |

Proof. Let S ⊆ X be such that diamX/Y (S) = 2ε. Let I : Y → 2S be a cover of S indexed by the
points of Y .

For all y ∈ Y and a, b ∈ I(y),

2ε ≥ dX/Y ([a], [b])

:= min{d(a, b), d(a, Y ) + d(b, Y )}
= min{d(a, b),d(a, y) + d(b, y)}
= d(a, b).

Thus,
diam(I(y)) = sup

a,b∈V (y)
d(a, b) ≤ 2ε.

By the definition of doubling dimension, for each I(y) there exists an ε-cover of size at most 2d

sets. Thus, an ε-cover for S can be constructed using the |Y | set {I(y) | y ∈ Y } separately. So, we
have an ε-cover of S of size at most |Y |2d and thus,

dim(X/Y) ≤ d+ log |Y |.
□
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Lemma 3.2. For any quotients X/Y and X/Yε over X, if Yε is an ε-cover of Y , then there exists
a correspondence between X/Y and X/Yε.

Proof. Let q and qε denote the canonical quotient maps for X/Y and X/Yε respectively. Let
R ⊆ X/Y × X/Yε be a relation such that R = {([a], [b]) | ∃x ∈ X : q(x) = [a], qε(x) = [b]}.
Because the quotient maps are surjective, it is easy to verify for the canonical projections of R that
πX/Y (R) = X/Y and πX/Yε

(R) = X/Yε. Thus, R is a correspondence. □

Theorem 3.3. For every quotient X/Y of a compact metric space X with doubling dimension d,
there exists a space of doubling dimension d+Hε(Y ) that is ε-close to X/Y in terms of the Gromov-
Hausdorff distance.

Proof. Let Yε ⊆ Y be such that
⋃

yi∈Yε
B(yi) is a minimal ε-cover of Y . Then, Hε(Y ) = log |Yε|.

So, by Lemma 3.1, we know that X/Yε has doubling dimension at most d + Hε(Y ). It suffices to
show that dGH(X/Y,X/Yε) ≤ ε.

By lemma 3.2, we have a correspondence, R, between X/Y and X/Yε. For an arbitrary pair
([a], [a]′), ([b], [b]′) ∈ R, let

δ = |dX/Y ([a], [b])− dX/Yε
([a]′, [b]′)|

= |min{d(a, b), d(a, Y ) + d(b, Y )} −min{d(a, b),d(a, Yε) + d(b, Yε)}|.

Because Yε ⊂ Y , we have d(a, Y ) ≤ d(a, Yε) ≤ d(a, Y ) + ε. Thus, computing distort(R) reduces
to the following two cases:

Case. d(a, b) ≤ d(a, Y ) + d(b, Y )

In this case, we have

dX/Y ([a], [b]) = d(a, b), and dX/Yε
([a]′, [b]′) = d(a, b).

Thus, δ = 0.

Case. d(a, Y ) + d(b, Y ) < d(a, b)

On the other hand, if d(a, Y ) + d(b, Y ) < d(a, b), then,

dX/Y ([a], [b]) = d(a, Y ) + d(b, Y ) and

dX/Yε
([a]′, [b]′) ≤ d(a, Yε) + d(b, Yε) ≤ d(a, Y ) + d(b, Y ) + 2ε.

Thus, δ ≤ 2ε.
Thus, the distortion of R is at most 2ε and hence,

dGH(X/Y,X/Yε) ≤
1

2
distort(R) ≤ ε.

Because Y is compact, Yε is finite and X/Yε is the required ε-close space with doubling dimension
d+Hε(Y ).

□

4. d-Dimensional k-Point Diagrams

If the doubling dimension of X is d, then a d-dimensional k-point diagram is a set of k distinct
elements of X. Let A = {ai}i∈Ik and B = {bi}i∈Ik be d-dimensional k-point diagrams where
Ik = {1, . . . , k}. The bottleneck of a bijection η : A → B is maxai∈A d(ai, η(ai)). An optimal
matching minimizes the bottleneck and the bottleneck distance between A and B is dB(a, b) =
minη maxai∈a d(ai, η(ai)). Thus, CX

k = (CX
k ,dB) is a metric space defined over the set of all d-

dimensional k point diagrams and the bottleneck distance of their matchings, dB.
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Theorem 4.1. Let X = (X,d) be a d-dimensional doubling metric. Let CX
k denote the metric space

of k-point diagrams in X with the bottleneck metric. Then, dim(CX
k ) ≤ kd.

Proof. Let T be an ε-ball in CX
k . So by definition, for matchings η,

sup
A,B∈T

inf
η:A→B

max
i

d(ai, η(ai)) ≤ ε

Therefore, T = {{a1, . . . , ak} | ai ∈ Bi} where each Bi is an ε-ball in X. There exists an ε-cover,
Ui, for every Bi such that |Ui| ≤ 2d.

Moreover, for every {a1, . . . , ak} ∈ T there exists {V1, . . . , Vk} where each set Vi ∈ Ui is such
that ai ∈ Vi. Thus C = {{V1 . . . Vk} | Vi ∈ Ui} is an ε-cover of T of size at most 2kd. So
dim(CX

k ) ≤ kd. □

5. Space of Bounded Persistence Diagrams

From the preceding two sections we get an approximation of single-class quotient spaces and a
bound on the doubling dimension of finite point bottleneck spaces respectively. These results come
together in the space of bounded persistence diagrams to form a nearly low dimensional subspace
of persistence diagrams.

Let D = (R2, ℓ∞). Denoting G as the diagonal from (0, 0) to (N,N), let DN/G = (DN/G, dDN/G)
be the N -bounded persistence plane. By definition, dDN/G([a], [b]) = min{ℓ∞(a, b), ℓ∞(a,G) +

ℓ∞(b,G)}. Let C
DN/G
k = (C

DN/G
k ,dB) be the bottleneck space of all k-point persistence diagrams

bounded by N and let C
DN/Gε

k = (C
DN/Gε

k ,dB) denote the k-point bottleneck space in the approx-
imate N -bounded k-point persistence plane where Gε is the minimum ε-cover of G.

Theorem 5.1. The space of k-point N -bounded persistence diagram is ε-close to a space of doubling
dimension at most (2 + log⌈N/2ε⌉)k in terms of the Gromov-Hausdorff distance.

Proof. Because dim(D) = 2 and |Gε| = ⌈N/2ε⌉, from theorem 4.1, we know that dim(C
DN/Gε

k ) ≤ (2+
log⌈N/2ε⌉)k. To show that this approximate persistence plane is ε-close the bounded persistence
plane we use a technique similar to theorem 3.3.

By lemma 3.2, we know that the correspondence R between DN/G and DN/Gε has distortion at

most 2ε. Let Rk denote the correspondence between C
DN/G
k and C

DN/Gε

k defined as follows:

Rk = {({a1, . . . , ak}, {b1, . . . , bk}) | ∃m : Ik → Ik,∀i : (ai, bm(i)) ∈ R}.

To show that dGH(C
DN/Gε

k ,C
DN/G
k ) ≤ ε, it is sufficient to bound the distortion of Rk.

Let (A,B) and (A′, B′) be arbitrary pairs in the Rk, where A = {ai}i∈Ik , A′ = {a′i}i∈Ik , B =
{bi}i∈Ik , and B′ = {b′i}i∈Ik . Without loss of generality, we may assume they are indexed so that
for all j, we have (aj , bj) ∈ R and (a′j , b

′
j) ∈ R. Let η : Ik → Ik be the permutation of indices that

gives the bottleneck matching between A and A′, i.e.,

dB(A,A
′) = max

i∈Ik
dDN/G(ai, a

′
η(i)).

It follows from the distortion bound on R that

dB(B,B′) ≤ max
j∈Ik

dDN/Gε
(bj , b

′
η(j))

≤ max
j∈Ik

(dDN/G(aj , a
′
η(j)) + 2ε)

= dB(A,A
′) + 2ε.

Symmetrically, we have dB(A,A
′) ≤ dB(B,B′) + 2ε and thus, distort(Rk) ≤ 2ε as desired. □

Thus, the space of bounded k-point persistence diagrams is nearly low-dimensional.
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