
Reverse Shortest Path Problem in Weighted Unit-Disk Graphs∗

Haitao Wang† Yiming Zhao‡

Abstract

Given a set P of n points in the plane, a unit-disk graph Gr(P ) with respect to a parameter r
is an undirected graph whose vertex set is P such that an edge connects two points p, q ∈ P if the
(Euclidean) distance between p and q is at most r (the weight of the edge is 1 in the unweighted
case and is the distance between p and q in the weighted case). Given a value λ > 0 and two points
s and t of P , we consider the following reverse shortest path problem: Compute the smallest r such
that the shortest path length between s and t in Gr(P ) is at most λ. The unweighted case of the

problem was solved in O(n5/4 log7/4 n) time before. In this abstract, we study the weighted case

and present an O(n5/4 log5/2 n) time algorithm. We also consider the L1 version of the problem
where the distance of two points in the plane is measured by the L1 metric. We solve the L1

problem in O(n log3 n) time for both the unweighted and weighted cases.

1 Introduction

Given a set P of n points in the plane and a parameter r, the unit-disk graph Gr(P ) is an undirected
graph whose vertex set is P such that an edge connects two points p, q ∈ P if the (Euclidean)
distance between p and q is at most r. The weight of each edge of Gr(P ) is defined to be one in the
unweighted case and is defined to the distance between the two vertices of the edge in the weighted case.
Alternatively, Gr(P ) can be viewed as the intersection graph of the set of congruous disks centered
at the points of P with radii equal to r/2, i.e., two vertices are connected if their disks intersect. The
length of a path in Gr(P ) is the sum of the weights of the edges of the path.

Computing shortest paths in unit-disk graphs with different distance metrics and different weights
assigning methods has been extensively studied, e.g., [3–7, 9–11]. Although a unit-disk graph may
have Ω(n2) edges, geometric properties allow to solve the single-source-shortest-path problem (SSSP)
in sub-quadratic time. Roditty and Segal [9] first proposed an algorithm of O(n4/3+ε) time for unit-disk
graphs for both unweighted and weighted cases, for any ε > 0. Cabello and Jejčič [3] gave an algorithm
of O(n log n) time for the unweighted case. Using a dynamic data structure for bichromatic closest
pairs [1], they also solved the weighted case in O(n1+ε) time [3]. Chan and Skrepetos [4] gave an O(n)
time algorithm for the unweighted case, assuming that all points of P are presorted. Kaplan et al. [7]
developed a new randomized result for the dynamic bichromatic closest pair problem; applying the
new result to the algorithm of [3] leads to an O(n log12+o(1) n) expected time randomized algorithm for
the weighted case. Recently, Wang and Xue [10] proposed a new algorithm that solves the weighted
case in O(n log2 n) time.

The L1 version of the SSSP problem has also been studied, where the distance of two points in the
plane is measured under the L1 metric when defining the graph Gr(P ). Note that in the L1 version a
“disk” becomes a diamond. The SSSP algorithms of [3,4] for the L2 unweighted version can be easily

∗This research was supported in part by NSF under Grant CCF-2005323.
†Department of Computer Science, Utah State University, Logan, UT 84322, USA. haitao.wang@usu.edu
‡Corresponding author. Department of Computer Science, Utah State University, Logan, UT 84322, USA.

yiming.zhao@usu.edu

1



adapted to the L1 unweighted version. Wang and Zhao [11] recently solved the L1 weighted case in
O(n log n) time. It is also known Ω(n log n) is a lower bound for the SSSP problem in both L1 and
L2 versions [3,11]. Hence, the SSSP problem in the L1 weighted/unweighted case as well as in the L2

unweighted case has been solved optimally.
In this abstract, we consider the following reverse shortest path (RSP) problem. In addition to P ,

given a value λ > 0 and two points s, t ∈ P , the problem is to find the smallest value r such that
the distance between s and t in Gr(P ) is at most λ. Throughout the abstract, we let r∗ denote the
optimal value r for the problem. The goal is therefore to compute r∗.

Observe that r∗ must be equal to the distance of two points in P in any case (i.e., L1, L2, weighted,
unweighted). For the L2 unweighted case, Cabello and Jejčič [3] mentioned a straightforward solution
that can solve it in O(n4/3 log3 n) time, by using the distance selection algorithm of Katz and Sharir [8]
to perform binary search on all interpoint distances of P ; Wang and Zhao [12] later gave two algorithms
with time complexities O(bλc ·n log n) and O(n5/4 log7/4 n)1, respectively, using the parametric search
technique. In particular, the first algorithm is interesting when λ is relatively small and the second
algorithm uses the first one as a subroutine.

In this abstract, we study the L2 weighted case of the RSP problem and present an algorithm of
O(n5/4 log5/2 n) time. In addition, we also consider the L1 version and solve the L1 RSP problem in
O(n log3 n) time for both the unweighted and weighted cases.

The RSP problem has been studied in the literature under various problem settings. Intuitively, the
problem is to modify the graph (e.g., modify edge weights) so that certain desired constraints related
to shortest paths can be satisfied, e.g., [2, 13]. As a motivation of our problem, consider the following
scenario. Suppose Gr(P ) represents a wireless sensor network in which each sensor is represented by a
disk centered at a point in P and two sensors can communicate with each other (e.g., directly transmit
a message) if they are connected by an edge in Gr(P ). The disk radius is proportional to the energy
of the sensor. The latency of transmitting a message between two neighboring sensors is proportional
to their distance. For two sensors s and t, we want to know the minimum energy for all sensors so
that the total latency of transmitting messages between s and t is no more than a target value λ. It
is not difficult to see that this is equivalent to our RSP problem.

2 Our algorithms – an overview

In this section, we give a brief overview on our algorithms. We begin with the L2 weighted RSP
problem.

Our algorithm for the L2 weighted RSP problem follows the parametric search scheme. Let dr(s, t)
denote the distance from s to t in Gr(P ). Given any r, the decision problem is to decide whether
r∗ ≤ r. Observe that r∗ ≤ r holds if and only if dr(s, t) ≤ λ. Hence, the shortest path algorithm
of Wang and Xue [10] (referred to the WX algorithm) can be used to solve the decision problem in
O(n log2 n) time. To compute r∗, since r∗ is equal to the distance of two points of P , one could first
compute all interpoint distances of points of P and then use the WX algorithm to perform binary
search among these distances to compute r∗. Clearly, the algorithm takes Ω(n2) time. Alternatively,
as mentioned in [3], one can perform binary search by using the distance selection algorithm of Katz
and Sharir [8] (i.e., given any k with 1 ≤ k ≤

(
n
2

)
, the algorithm finds the k-th smallest distance among

all interpoint distances of P ) without explicitly computing all these Ω(n2) distances. As the algorithm
of Katz and Sharir [8] runs in O(n4/3 log2 n), this approach can compute r∗ in O(n4/3 log3 n) time.

We propose a more efficient parametric search algorithm, by “parameterizing” the decision al-
gorithm, i.e., the WX algorithm. Like typical parametric search algorithms, we run the decision
algorithm with a parameter r ∈ (r1, r2] by simulating the decision algorithm on the unknown r∗. At

1The time complexity given in [12] is O(n5/4 log2 n), but can be easily improved to O(n5/4 log7/4 n) by changing the
threshold for defining large cells from n3/4 to (n/ logn)3/4 in Section 4 [12].

2



each step of the algorithm, we call the decision algorithm on certain “critical values” r to compare r
and r∗, and the algorithm will proceed accordingly based on the result of the comparison. The interval
(r1, r2] will also be shrunk after these comparisons but is guaranteed to contain r∗ throughout the
algorithm. The algorithm terminates once t is reached, at which moment we can prove that r∗ is equal
to r2 of the current interval (r1, r2].

Specifically, the WX algorithm first builds a grid Ψr(P ) implicitly on the plane such that for any
point p ∈ P , if p is in a cell C of the grid, then all neighboring points of p in Gr(P ) lie in a constant
number of neighboring cells of C. The WX algorithm follows the basic idea of Dijkstra’s algorithm
and computes an array dist[·] for each point p ∈ P , where dist[p] will be equal to dr(s, p) when the
algorithm terminates. Different from Dijkstra’s shortest path algorithm, which picks a single vertex in
each iteration to update the shortest path information of other adjacent vertices, the WX algorithm
aims to update in each iteration the shortest path information for all points within one single cell
of Ψr(P ) and pass on the shortest path information to vertices lying in the neighboring cells. More
specifically, each iteration of the algorithm picks a vertex z with the minimum dist-value. We assume
that z lies in cell C of Ψr(P ). We update the shortest information (dist-values) of vertices lying in
cell C and vertices lying in a constant number of neighboring cells of C. After that, it can be proved
that dist[p] = dr(s, p) for all points p of P in C [10].

To parameterize the WX algorithm, we maintain an interval (r1, r2] and ensure r∗ ∈ (r1, r2] during
the whole algorithm. Our algorithm follows the workflow of the WX algorithm. In each step of our
algorithm, although we do not know r∗, we find some critical values of r in (r1, r2] such that behaviors
of the WX algorithm change on these critical values. Then the decision algorithm is called to do a
binary search on these critical values and shrink the interval (r1, r2] to (r′1, r

′
2] such that no critical

values lie in (r′1, r
′
2). For any r ∈ (r′1, r

′
2) after shrinking, if r∗ 6= r′2 (i.e., r∗ ∈ (r′1, r

′
2)), then the

behaviors of the WX algorithm running on r are the same as the behaviors of the WX algorithm
running on r∗. The algorithm terminates after t is reached, and r∗ is equal to r2 of the final interval
(r1, r2]. As t is reached within O(n) steps and each step takes more than linear time (due to calling
the decision algorithm), the total time of the algorithm is at least quadratic. To reduce the time
complexity, we borrow an idea from [12] as follows. We classify each cell of the grid built in the WX
algorithm as a large cell if it contains at least n3/4 log3/2 n points of P , and a small cell otherwise.
We use a subroutine of the distance selection algorithm of Katz and Sharir [8] to preprocess all small
cells and compute an interval (r1, r2] such that if r∗ 6= r2, for any r ∈ (r1, r2), the points lying in
neighboring small cells have the same connectivities in both Gr(P ) and Gr∗(P ). More specifically, for
any two points p, q ∈ P lying in a pair of neighboring small cells of the grid, an edge connects p and
q in Gr(P ) if and only if an edge connects p and q in Gr∗(P ). Then we follow the same algorithm as
above. For small cells, we just pick any r ∈ (r1, r2) and run the original WX algorithm on Gr(P ) since
the points lying in neighboring small cells have the same connectivities in Gr(P ) and Gr∗(P ). This
avoids parametric search (and thus calling the decision algorithm is not needed). For large cells, we
run the same parametric search as before. The threshold n3/4 log3/2 n is carefully chosen to balance
the running time of the parametric search on large cells (e.g., there are only O(n1/4/ log3/2 n) large
cells in the grid) and the preprocessing on small cells. The total time complexity of our algorithm for
the L2 weighted RSP problem is O(n5/4 log5/2 n).

For the L1 RSP problem, we use an approach similar to the distance selection algorithm of Katz
and Sharir [8]. As in the L2 case, the decision problem can be solved in O(n log n) time by applying the
SSSP algorithms for both the unweighted case and the weighted case [3,4,12] (more precisely, for the
unweighted case, the decision problem can be solved in O(n) time after O(n log n) time preprocessing
for sorting the points of P [4]). Let Π denote the set of all pairwise distances of all points of P . In
light of the observation that r∗ is in Π, each iteration of our algorithm computes an interval (aj , bj ]
(initially, a0 = −∞ and b0 = ∞) such that r∗ ∈ (aj , bj ] and the number of values of Π in (aj , bj ] is
a constant fraction of the number of values of Π in (aj−1, bj−1]. In this way, r∗ can be found within

3



O(log n) iterations. Each iteration will call the decision algorithm to perform binary search on certain
values. The total time of the algorithm is O(n log3 n).

A by-product of our technique is an O(n log3 n) time algorithm that can compute the k-th smallest
L1 distance among all pairs of points of P , for any given k with 1 ≤ k ≤

(
n
2

)
. As mentioned before,

the L2 version of the problem can be solved in O(n4/3 log2 n) time [8].

Remarks. Our RSP problem is defined with respect to a pair of points (s, t). Our techniques can be
extended to solve a more general “single-source” version of the problem: Given a source point s ∈ P
and a value λ > 0, compute the smallest value r∗ such that the shortest paths lengths from s to all
vertices of Gr(P ) are at most λ, i.e., maxt∈P dr∗(s, t) ≤ λ. The decision problem (i.e., deciding whether
r∗ ≤ r for a given r) now becomes deciding whether maxt∈P dr(s, t) ≤ λ. All decision algorithms for
our original RSP problem are actually for single-source-shortest-paths and thus can be used directly
for solving the new decision problem with asymptotically the same time complexities. With these
“new” decision algorithms, to compute r∗, we can follow the same algorithm schemes as before. One
difference is that in the L2 case our original algorithm terminates once t is reached but now we
instead halt the algorithm once all points of P are reached, which does not affect the running time
asymptotically. As such, the “single-source” version of the RSP problem in the L2 weighted case can
be solved in O(n5/4 log5/2 n) time and the L1 unweighted/weighted case can be solved in O(n log3 n)
time.

References

[1] P.K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shallow levels in 3-dimensional arrangements and
its applications. SIAM Journal on Computing, 29:912–953, 1999.

[2] D. Burton and P.L. Toint. On an instance of the inverse shortest paths problem. Mathematical Programming,
53:45–61, 1992.

[3] S. Cabello and M. Jejčič. Shortest paths in intersection graphs of unit disks. Computational Geometry: Theory and
Applications, 48(4):360–367, 2015.

[4] T.M. Chan and D. Skrepetos. All-pairs shortest paths in unit-disk graphs in slightly subquadratic time. In Pro-
ceedings of the 27th International Symposium on Algorithms and Computation (ISAAC), pages 24:1–24:13, 2016.

[5] T.M. Chan and D. Skrepetos. Approximate shortest paths and distance oracles in weighted unit-disk graphs. In
Proceedings of the 34th International Symposium on Computational Geometry (SoCG), pages 24:1–24:13, 2018.

[6] J. Gao and L. Zhang. Well-separated pair decomposition for the unit-disk graph metric and its applications. SIAM
Journal on Computing, 35(1):151–169, 2005.

[7] H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, and M. Sharir. Dynamic planar Voronoi diagrams for general distance
functions and their algorithmic applications. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2495–2504, 2017.

[8] M. Katz and M. Sharir. An expander-based approach to geometric optimization. SIAM Journal on Computing,
26(5):1384–1408, 1997.

[9] L. Roditty and M. Segal. On bounded leg shortest paths problems. Algorithmica, 59(4):583–600, 2011.

[10] H. Wang and J. Xue. Near-optimal algorithms for shortest paths in weighted unit-disk graphs. Discrete and
Computational Geometry, 64:1141–1166, 2020.

[11] H. Wang and Y. Zhao. An optimal algorithm for L1 shortest paths in unit-disk graphs. In Proceedings of the 33rd
Canadian Conference on Computational Geometry (CCCG), pages 211–218, 2021.

[12] H. Wang and Y. Zhao. Reverse shortest path problem for unit-disk graphs. In Proceedings of the 17th Inter-
national Symposium of Algorithms and Data Structures (WADS), pages 655–668, 2021. Full version available at
https://arxiv.org/abs/2104.14476.

[13] J. Zhang and Y. Lin. Computation of the reverse shortest-path problem. Journal of Global Optimization, 25(3):243–
261, 2003.

4

https://arxiv.org/abs/2104.14476

	Introduction
	Our algorithms – an overview

