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Abstract. In this paper, we start with a variation of the star cover problem called
the Two-Squirrel problem. Given a set P of 2n points in the plane, and two sites c1
and c2, compute two n-stars S1 and S2 centered at c1 and c2 respectively such that the
maximum weight of S1 and S2 is minimized. This problem is strongly NP-hard by a re-
duction from Equal-size Set-Partition with Rational Numbers. Then we consider two
variations of the Two-Squirrel problem, namely the Dichotomy Two-Squirrel problem
and the Two-MST problem, which are both strongly NP-hard. In terms of approxi-
mation algorithms, in fact Two-Squirrel and Dichotomy Two-Squirrel both admit a
full PTAS (FPTAS) using the traditional methods. For Two-MST, the scenario is
quite different and we are only able to obtain a factor-4.8536 approximation.

Keywords: Minimum star/tree cover · NP-hardness · Set-Partition · Approximation
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1 Introduction

Imagine that two squirrels try to fetch and divide 2n nuts to their nests. Since each time a
squirrel can only carry a nut back, this naturally gives the following problem: they should
travel along the edges of an n-star, centered at the corresponding nest, such that each leaf
(e.g., nut) is visited exactly once (in and out) and the maximum distance they visit should
be minimized (assuming that they travel at the same speed, there is no better way to enforce
the fair division under such a circumstance). See Figure 1 for an illustration.

A
B

Fig. 1: Two squirrels A and B try to fetch and divide 2n nuts.

A star S is a tree where all vertices are leaves except one (which is called the center

of the star). An n-star is a star with n leaf nodes. When the edges in S carry weights,
the weight of S is the sum of weights of all the edges in S. Given two points p, q in the
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plane, with p = (xp, yp) and q = (xq, yq), we define the Euclidean distance between p, q as

d(p, q) =
√

(xp − xq)2 + (yp − yq)2.
Formally, the Two-Squirrel problem can be defined as: Given a set P of 2n points in the

plane and two extra point sites c1 and c2, compute two n-stars S1 and S2 centered at c1 and
c2 respectively such that each point pj ∈ P is a leaf in exactly one of S1 and S2; moreover,
the maximum weight of S1 and S2 is minimized. Here the weight of an edge (ci, pj) in Si is
w(ci, pj) = d(ci, pj) for i = 1, 2.

One can certainly consider a variation of the two-squirrel problem where the points are
given as pairs (p2i−1, p2i) for i = 1, ..., n, and the problem is to split all the pairs (i.e.,
one to c1 and the other to c2) such that maximum weight of the two resulting stars is
minimized. We call this version Dichotomy Two-Squirrel. A more general version of the
problem is when the two squirrels only need to split the 2n nuts and each could travel
along a Minimum Spanning Tree (MST) of the n points representing the locations of the
corresponding nuts, which we call the Two-MST problem: Compute a partition of P into
n points each, P1 and P2, such that the maximum weight of the MST of P1 ∪ {c1} and
P2 ∪ {c2}, i.e., max{w(P1 ∪ {c1}), w(P2 ∪ {c2})}, is minimized.

Covering a (weighted) graph with stars or trees (to minimize the maximum weight of
them) is a well-known NP-hard problem in combinatorial optimization [2], for which constant
factor approximation is known. Recently, bi-criteria approximations are also reported [3].
In the past, a more restricted version was also investigated on graphs [7]. Our Two-Squirrel
problem can be considered a special geometric star cover problem where the two stars are
disjoint though are of the same cardinality, and the objective function is also to minimize
the maximum weight of them.

It turns out that both Two-Squirrel and Dichotomy Two-Squirrel are strongly NP-hard
(under both the Euclidean and L1 metric, though we focus only on the Euclidean case in
this paper). The proofs can be directly from two variations of the famous Set-Partition
problem [4, 5], namely, Equal-Size Set-Partition for Rationals and Dichotomy Set-Partition
for Rationals, which are both strongly NP-hard with the recent result by Wojtczak [6].
We then show that Dichotomy Set-Partition for Rationals can be reduced to Two-MST in
polynomial time, which indicates that Two-MST is also strongly NP-hard.

For the approximation algorithms, both Two-Squirrel and Dichotomy Two-Squirrel ad-
mit a FPTAS (note that this does not contradict the known result that a strongly NP-hard
problem with an integral objective function cannot be approximated with a FPTAS unless
P=NP, simply because our objective functions are not integral). This can be done by first
designing a polynomial-time dynamic programming algorithm through scaling and rounding
the distances to integers, obtaining the corresponding optimal solutions, and then tracing
back to obtain the approximate solutions. The approximation algorithm for Two-MST is
more tricky; in fact, with a known lower bound by Chung and Graham related to the fa-
mous Steiner Ratio Conjecture [1], we show that a factor 4.8536 approximation can be
obtained.

In the next section, we give details for our results for the Two-MST problem. In Section
3, we conclude the paper.

2 Results for the Two-MST Problem

2.1 Preliminaries

In this section, we first define Equal-size Set-Partition for Rationals and Dichotomy Set-
Partition for Rationals which are generalizations of Set-Partition [4, 5].

In Dichotomy Set-Partition with Rationals, we are given a set E of 2n positive rationals
numbers (rationals, for short) with E = E′

1
∪ E′

2
∪ · · ·E′

n such that E′

i = {ai,1, ai,2} is a
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2-set (or, E′

i = (ai,1, ai,2), i.e., as a pair) and the problem is to decide whether E can be
partitioned into E1 and E2 such that every two elements in E′

i is partitioned into E1 and
E2 (i.e., one in E1 and the other in E2 — clearly |E1| = |E2| = n) and

∑

a∈E1
a =

∑

b∈E2
b.

(Equal-size Set-Partition with Rationals is simply a special case of Dichotomy Set-Partition
with Rationals where E is given as a set of 2n rationals, i.e., E = {a1, a2, · · · , a2n} and E′

i’s
are not given.)

With integer inputs, both Dichotomy Set-Partition and Equal-size Set-Partition, like
their predecessor Set-Partition, can be shown to be weakly NP-complete. Recently, Wojtczak
proved that even with rational inputs, Set-Partition is strongly NP-complete [6]. In fact, the
proof by Wojtczak implied that Dichotomy Set-Partition and Equal-size Set-Partition are
both strongly NP-complete — because in this reduction from a special 3-SAT each pair xi

and x̄i are associated with two unique rational numbers which must be split in two parts.
So we re-state this theorem by Wojtczak.

Theorem 1. Dichotomy Set-Partition with Rationals and Equal-size Set-Partition with Ra-

tionals are both strongly NP-complete.

2.2 Strong NP-hardness for Two-MST

In this subsection, we prove that the Two-MST problem (2-MST for short), is also strongly
NP-hard. Recall that in the 2-MST problem, one is given a set P of 2n points in the plane,
together with two point sites c1 and c2, the objective is to compute two MST T1 and T2

each containing n points in P (and c1 and c2 respectively) such that the maximum weight of
T1 and T2, max{w(T1), w(T2}, is minimized. (Here the weight of any edge (pi, pj) or (pi, ck)
in Tk, k = 1..2, is the Euclidean distance between the two corresponding nodes.) We reduce
Equal-size Set-Partition for Rationals to 2-MST in the following.

Given E = {a1, a2, · · · , a2n}, where each ai (i = 1..2n) is a rational number, for Equal-
size Set-Partition with Rationals we need to partition E into two equal-size sets E1 and
E2 such that the rationals in E1 and E2 sum the same, i.e., t =

∑

a∈E1
a =

∑

b∈E2
b. We

construct 6n points in P as well as 2 point sites c1 and c2 as follows.
First set c1 = c2 = (0, 0). Then for i = 1 to 2n, construct 3 points corresponding to ai:

pi = (i ·t, ai), qi,1 = (i ·t, 0) and qi,2 = (i ·t, 0). We loosely call these 3 points forming the i-th
cusp Ci. (The sketch of an example is shown in Fig. 2.) Since t >> ai, the optimal MST’s
must first split the points on the x-axis, i.e., {c1, c2}∪ (∪i=1..2n{qi,1, qi,2}), evenly. Secondly,
pi must be connected to exactly one of qi,1 and qi,2. To make the maximum weight of the
resulting MST T1 and T2 minimum, it comes to how to connect pi to qi,1 and qi,2 such that
the weight of T1 and T2 is the same, i.e., with a value of (2n+1)t. It is clear that in this case
|P | = 6n and |T1| = |T2| = 3n+ 1, due to the addition of c1 and c2. Hence, we summarize:
Dichotomy Set-Partition with Rationals has a solution iff the 2-MST instance P ∪ {c1, c2}
admits a solution with optimal weight of (2n+1)t. We therefore have the following theorem.

Theorem 2. Two-MST is strongly NP-hard.

We comment that with this proof, a variation of 2-MST, e.g., even if c1 and c2 are not
given in advance, remains strongly NP-hard.

2.3 A 4.8536-Approximation for Two-MST

First let P1 be the subset of points closer to c1, and P2 the subset of points closer to c2
(ties are broken arbitrarily). Let T be an MST of P ∪ {c1, c2}. T1 is obtained by removing
c2 plus any n points of T . Viewing these removed points as Steiner points, by the bound
of Chung and Graham [1], we have w(T1) ≤ (1/0.82416874) · w(T ) ≤ 1.2134 · w(T ). Then,
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Fig. 2: Illustration for the reduction from Equal-size Set-Partition with Rationals to 2-MST.
Here only the construction for a1 and a2 are shown.

obtain T2 by taking the points not in T1. We also have w(T2) ≤ 1.2134 · w(T ). Return the
best solution among (P1, P2) or (T1, T2). Note that in either case, the approximate solution
APP satisfies APP ≤ 1.2134 · w(T ).

To obtain the final factor, let M1 and M2 be the two MST’s of the optimal solution, and
let OPT be the maximum weight ofM1 orM2. By taking the union ofM1 andM2, and adding
an edge between c1 and c2, we obtain a spanning tree. Thus, w(M1) + w(M2) + d(c1, c2) ≥
w(T ), since T is a minimum spanning tree of P ∪ {c1, c2}.

Next we show that OPT ≥ d(c1, c2)/2. If the optimal solution splits P into P1 and P2,
we just return that. Now assume that the optimal solution does not do that. This means
that M1 has a point of P2, or M2 has a point of P1. Let p ∈ M1 ∩P2, then the path from c1
to p in M1 shows that OPT ≥ d(c1, c2)/2. The same inequality holds if p ∈ M2 ∩ P1.

Thus we obtain

w(M1) + w(M2) + d(c1, c2) ≤ OPT +OPT + 2 ·OPT = 4 ·OPT .

Combined with the above, this gives APP ≤ 1.2134·w(T ) ≤ 1.2134·(4·OPT ) = 4.8536·OPT .

Theorem 3. Two-MST can be approximated with a factor-4.8536 approximation algorithm

which runs in O(n log n) time.

3 Concluding Remarks

The obvious question is whether we could improve the approximation factor for 2-MST.
Even with the current algorithm, we believe that the actual factor should be around 3.
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