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Abstract. Our primary motivation is the large-scale testing and per-
formance analysis of constrained optimization algorithms. To that end,
we wish to randomly generate pairs (f,Ω) consisting of a continuous ob-
jective target f and a convex feasibility region Ω contained in its domain.
Our challenge is to produce (f,Ω) in such a way that the true solution
of the associated constrained optimization problem can be established
combinatorially without recourse to an optimization algorithm.

1. Problem Statement

We wish to randomly generate pairs (f,Ω), where f is a continuous piece-
wise linear (PWL) function defined in a bounded, closed, convex domain
dom(f) ⊆ Rd and Ω ⊆ dom(f) is a convex d-polytope. Our challenge is to
produce (f,Ω) in such a way that the constrained optimization problem

find x∗ ∈ arg minx∈Ωf(x) (1)

can be resolved combinatorially without recourse to an optimization algo-
rithm (similarly, for a maximization problem).

Our motivation is the large-scale testing and performance analysis of con-
strained optimization algorithms that seek to solve (1). Of particular inter-
est to us are data-driven optimization algorithms that take a pair (D,Ω)
of data D and constraints Ω as input. Such algorithms take an end-to-end
approach that combines learning and optimization [7, 10, 11, 22, 23]. Given
(f,Ω) and a hypothesis on the distribution of data points in dom(f), a pair
(D,Ω) can easily be derived.

A continuous PWL function is in essence a combinatorial gadget. The
domain of each of its affine pieces is a polytope. Subdividing polytopes into
simplices, a continuous PWL function can be derived from a triangulation
of its domain and set of real values, one for each triangulation vertex. The
random generation of continuous PWL functions then becomes the random
generation of triangulations [3, 6, 14, 15].

2. Triangulations

Let S ⊆ Rd be an n point configuration with n ≥ d + 1 and assume the
affine span of S is Rd. A full triangulation of S is an abstract d-dimensional
simplicial complex T with vertex set S. The (finite) set of i-simplices of
T is denoted by T i. A full triangulation satisfies T 0 = S. The geometric
realization of T , defined as an abstract topological space, is denoted by ‖T ‖.
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We add a requirement that relates triangulations as abstract combinato-
rial gadgets to concrete embeddings in Rd. We consider only those triangu-
lations for which the following map ι : ‖T ‖ → Rd is an embedding: for each
τ ∈ T i and v ∈ τ , ι maps the vertex of the standard i-simplex ‖τ‖ labeled
by v to v and restricts to an affine map on ‖τ‖. By abuse of notation, we use
‖T ‖ also for the image of ι. Hence, we say that T is a convex triangulation
when ‖T ‖ is.

3. Piece-wise Linear Functions

Consider a pair (T ,V) consisting of a triangulation T and a set V =
{rv ∈ R | v ∈ T 0}. It gives rise to a continuous PWL function, which we
will denote by f(T ,V). Its domain is the bounded, closed dom(f) = ‖T ‖. To

evaluate f at v ∈ dom(f), consider a simplex τ = {v1, . . . , vd+1} ∈ T d such
that v ∈ ‖τ‖ together with its associated values r = (r1, . . . , rd+1) from V.
Define the homogenization of v ∈ Rd to be v̄ = (v, 1). When simplices are
non-degenerate, we are guaranteed a unique solution x̄ ∈ Rd+1 to Āτ x̄ = r,
where Āτ is the matrix with rows {v̄1, . . . , v̄d+1}, and we set f(v) = x̄ · v̄.

The random generation of continuous PWL functions f(T ,V) is thus tan-
tamount to the random generation of triangulations T . There is a rich
literature on triangulating polygons, polytopes, and point configurations
[1, 4, 8, 9, 21]. The software TOPCOM defines the state of the art of tri-
angulation generation and enumeration given a fixed point configuration
[19, 13], and there are other triangulation generation schemes that produce
optimal triangulations in some desired sense [2, 5]. Our purpose is different;
we do not seek to solve the combinatorial problem of listing or enumerating
all triangulations for a given point configuration, nor do we seek to produce
optimal triangulations. Instead, our challenge is to generate sufficiently rich,
that is, sufficiently random collections of continuous PWL functions.

In a computation environment, a simplex τ ∈ T d is numerically de-
generate with respect to system tolerance tol, if it has effective zero vol-
ume, that is, vol(τ) = |det(Āτ )|/d! < tol. This prompts the need for
some form of triangulation regularization [20]. Consider the set of volumes
{vol(τ)/vol(T )}τ∈T d of a triangulation T . It can be matched to a parti-
tion of [0, 1], albeit not uniquely. Regardless of the partition produced, the
distribution of the minimal volume will be equivalent to the distribution of
the minimum in a random choice of #T d − 1 points in [0, 1], which is well
known to be Beta(1,#T d − 2). We formulate triangulation regularization
as follows.

Definition 3.1 (Regularization Condition). Given ε ∈ (0, 1), a triangula-
tion T is subject to the ε-regularization condition if

CDFMinVol(min{vol(τ)/vol(T )}τ∈T d) > ε (2)

where MinVol ∼ Beta(1,#T d − 2).

4. Feasibility Region

We now turn to the generation of convex polytopes Ω ⊆ dom(f), i.e.,
the feasibility region introducing constraints into the optimization problem
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(1). Scenarios Ω ( dom(f) are of particular interest when extending the
generation of (f,Ω) to the generation of (D,Ω). In real-world applications,
governed by changing business consideration, historical business record may
contain data points no longer considered feasible. Another reason to incor-
porate unfeasible data points into a synthetic data generation scheme is the
testing of algorithms that seek to learn, perturb, or optimize the feasibility
region itself.

Let f = f(T ,V) : ‖T ‖ → R and consider a convex triangulation T◦ that
satisfies the property:

∀τ ∈ T d◦ , ∃τ ′ ∈ T d : ‖τ‖ ⊆ ‖τ ′‖ (3)

Setting Ω = ‖T◦‖, we can easily solve (1), since

arg minx∈Ωf(x) = arg minv∈T 0
◦
f(v)

Given T , our goal is then to produce T◦ that satisfies Property (3). Generat-
ing f and Ω separately, and then producing T◦ via intersection {Ω∩‖τ‖}τ∈T
is akin to solving multiple LP problems, since the intersection of affine hy-
perplanes must be constrained [16, 17]. This defeats the purpose of our
combinatorial generation scheme. We therefore require a different approach.

5. Algorithm

Our proposed algorithm melds the generation of f and Ω with successive
ε-regularized pulling and placing (or pushing) of new vertices. Crucially, the
triangulation, updated at each incremental step, is maintained hierarchically.

Definition 5.1 (DAG of Simplices). A DAG i, t : E → V of d-simplices
has nodes τ = {v1, . . . , vd+1} ⊆ Rd in general position and strict inclusion
of geometric realizations ‖τ‖ ( ‖τ ′‖ for edges e = (τ ′, τ) ∈ E with i(e) =
τ ′, t(e) = τ .

Our algorithm takes as input: (i) a random variable X over Rd to sample
triangulation vertices, (ii) a random variable y over R to sample their respec-
tive values, (iii) an integer n ≥ d+1 for the number of triangulation vertices,
(iv) p ∈ [0, 1] for Bernoulli trials, and (v) ε ∈ (0, 1) for regularization. It
produces a list L = [G1, . . . , GN ] of DAGs of d-simplices and a dictionary V
of values, one for each unique vertex of some node τ ∈ V (Gi). The list L is
constructed so that, for every 1 ≤ m ≤ N , we have a convex triangulation
Tm with T dm = ∪i≤mleaves(Gi). In addition, Tm is a subtriangulation of Tm′
for m ≤ m′. The sequence [T1, . . . , TN ] allows us to establish Theorem 5.2,
which delivers what we have set out to do.

Theorem 5.2. For ρ ∈ [0, 1] and input n ≥ d + 1, Algorithm 1 gives rise
to (f,Ω) and vmin, vmax ∈ Ω, where f is a continuous PWL function defined
over a bounded, closed, convex domain dom(f) ⊆ Rd and Ω ⊆ dom(f) is a
convex d-polytope, such that,

(i) vol(Ω)/vol(dom(f)) ≥ ρ,
(ii) minΩ f = f(vmin) and maxΩ f = f(vmax),

(iii) the solutions vmin, vmax are produced in O(n).
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Algorithm 1 PWL Functions with Constraints

Input: X r.v. in Rd, y r.v. in R, n ≥ d+ 1, p ∈ [0, 1], ε ∈ (0, 1)
Output: (L = [G1, . . . , GN ],V)
τ ← sample {v1, . . . , vd+1} from X

V ← {vi : ri}d+1
i=1 , ri sampled from y

L← [DAG(roots = τ)]
i← 0
while i < n− (d+ 1) do

sample c from Bern(p)
if c = 0 then

sample v from X
if ∃G ∈ L : v ∈ G then

τ ← minimal in G w.r.t. v
τv ← subdivide τ w.r.t. v
if RegCond(τv, ε) then
V ← V + {v : sample y}
children(τ)← τdv
i← i+ 1

end if
else

facets(v)← {F |F facet of Conv(L) visible to v}
nodes(F )← {τ | ∃G ∈ L : τ ∈ G minimal w.r.t F}
leaves(F ) = ∪τ∈nodes(F )leaves(τ)

facets(F )← {F ′ | ∃ς ∈ leaves(F ) : F ′ ∈ ςd−1, ‖F ′‖ ⊆ ‖F‖}
τF ′ ← F ′ ∪ {v}, F ′ ∈ facets(F ), F ∈ facets(v)
if RegCond(leaves(F )∪{τF ′}F ′∈facets(F ), ε), ∀F∈facets(v) then
V ← V + {v : sample y}
L← L+ [DAG(roots = {τF ′ |F ′ ∈ facets(F ), F ∈ facets(v)})]
i← i+ 1

end if
end if

else
sample v ∈ ∪i‖Gi‖d−1

Gv ← {Gi | v ∈ Gi}
min(Gv)← {τ | ∃G ∈ Gv : τ ∈ G minimal w.r.t. v}
τv ← subdivide τ w.r.t. v, ∀τ ∈ min(Gv)
if RegCond(τv, ε), ∀τ ∈ min(Gv) then
V ← V + {v : sample y}
children(τ)← τdv , ∀τ ∈ min(Gv)
i← i+ 1

end if
end if

end while
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