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Abstract
Observing and documenting shape has fueled biological understanding as the shape

of biomolecules, cells, tissues, and organisms arise from the effects of genetics, devel-
opment, and the environment. The vision of Topological Data Analysis (TDA), that
data is shape and shape is data, will be relevant as biology transitions into a data-driven
era where meaningful interpretation of large datasets is a limiting factor. We focus first
on quantifying the morphology of X-ray CT scans of barley spikes and seeds using
topological descriptors based on the Euler Characteristic Transform. We then success-
fully train a support vector machine to distinguish and classify 28 different varieties
of barley based solely on the 3D shape of their grains. This shape characterization
will allow us later to link genotype with phenotype, furthering our understanding on
how the physical shape is genetically coded in DNA. (This work has been accepted in
inSilico Plants.)

1 Introduction

Biologists are accustomed to thinking about how the shape of biomolecules, cells, tissues,
and organisms arise from the effects of genetics, development, and the environment. Tradi-
tionally, biologists use morphometrics to compare and describe shapes. The shape of leaves
and fruits is quantified based on homologous landmarks—similar features due to shared
ancestry from a common ancestor—or harmonic series from a Fourier decomposition of
their closed contour. While these methods are useful for comparing many shapes in nature,
they cannot always be used: there may not be homologous points between samples or a
harmonic decomposition of a shape is not appropriate. Topological data analysis (TDA)
offers a more comprehensive, versatile way to quantify plant morphology. In particular,
Euler characteristic curves (ECC) serve as a succinct, computationally feasible topological
signature that allows downstream statistical analyses [12]. For example, ECCs have been
used to determine a morphospace for all leaves to then predict plant family and location [5].
Further analysis has determined the genetic basis of 2D leaf shape in apple [9], tomato [6],
and cranberry [3]. Here, we show the use of the Euler Characteristic to comprehensively
describe the shape of 3D voxel-based X-ray CT scans of barley seeds as a proof of concept.
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Figure 1: Filtration of a barley seed along the z-axis with 32 thresholds and its corresponding Euler
Characteristic Curve.

Table 1: SVM classification accuracy of barley seeds from 28 different accessions after 100
randomized training and testing sets. Classification scores was computed for each accession; the
weighted average for each score was taken afterwards, where the weight depended on the number
of test seeds used. The use of topological outperforms the use of exclusively traditional descriptors.

Shape Dimension No. of Scores (weighted average ± standard deviation)
descriptors reduction dims Precision Recall F1

Traditional * 11 0.58± 0.050 0.58± 0.016 0.57± 0.016
Topological KPCA 2 0.88± 0.031 0.87± 0.010 0.87± 0.011
Topological UMAP 12 0.75± 0.047 0.75± 0.016 0.74± 0.016
Combined KPCA 13 0.73± 0.052 0.72± 0.017 0.71± 0.017
Combined UMAP 23 0.89± 0.028 0.89± 0.010 0.89± 0.010

2 Methods

Consider a cubical complexX of dimension d. For a fixed direction ν ∈ Sd−1, and a height
value h ∈ R, we define

X(ν)h = {∆ ∈ X : 〈x, ν〉 ≤ h for all x ∈ ∆},

to be the subcomplex containing all cubical cells below height h in the direction ν. The
Euler characteristic at height h is χ(X(ν)h), the alternating sum of counts of cells in the
subcomplex X(ν)h. The Euler Characteristic Curve (ECC) of direction ν is defined as
{χ(X(ν)h)}h∈R, exemplified in Figure 1. The Euler Characteristic Transform (ECT) is
defined as the collection of all ECCs corresponding to all possible directions. To be more
precise, the ECT of complex X is defined as the function

ECT (X) : Sd−1 → ZR

ν 7→ {χ(X(ν)h)}h∈R.

We focus on the shape of barley seeds from a collection of 28 different barley acce-
sions from diverse regions across the Eurasian continent. Using X-ray CT—computed
tomography—scanning technology, we have created voxel-based 3D reconstructions of
over 875 spikes, from which we have isolated 3121 parental seeds. Since the seeds are
oblong in shape, we aligned them according to their three main principal components.

On one hand, we computed 11 traditional quantifiable shape descriptors for each seed,
such as length, width, and volume. On the other hand, we computed topological shape
descriptors using the ECT. For topological purposes, we treated each voxel-based image as
a dual cubical complex where each nonzero voxel is treated as a vertex [13].

We favor the use of the ECT for two reasons. First, the ECT is computationally inex-
pensive; since it is based on successive alternating sums of counts of cells, a single ECC
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Figure 2: SVM classification results for individual barley accessions. A. Results when using a
KPCA 2-dimension reduced topological vector. Accessions ordered according to their classification
accuracy determined by the topological shape descriptors. B. Results when using a UMAP 12-
dimension reduced topological vector. Accessions ordered according to their classification accuracy
determined by the combined shape descriptors.

can be computed in linear time with respect to the number of voxels in the image [10].
Second, the ECT effectively summarizes all the morphological features of any 3D complex
as it encodes sufficient information to reconstruct the initial complex [12], a result later
extended to the n-dimensional case [2]. Nonetheless, the idea of efficiently reconstructing
an arbitrary 3D object solely from its ECT remains elusive [1, 4, 8].

In our case, we used 158 different directions with 16 uniformly spaced thresholds. We
emphasized directions toward the crease of the seeds. This yielded a 2528-dimensional
vector for every seed. These high-dimensional vectors were later reduced in dimension
separately using non-linear KPCA [11] and UMAP [7].

The descriptiveness of both traditional and topological measures was tested by training
five non-linear support vector machines (SVM). These characterized and predicted the seeds
from the 28 distinct barley accessions based on three different collection of descriptors:
traditional, topological, and combined. We also varied the dimension-reduction method. In
every case, all the descriptors were centered and scaled to variance 1 prior to classification.
Given that SVM is a supervised learning method, we first randomly sampled 75% of the
seeds from every founder as our training data set. The remaining 25% was used to test the
accuracy of our prediction model. This setup was repeated 100 times. Average scores were
considered for the overall data set (Table 1), as well as for individual accessions (Fig. 2).

3 Results and Conclusions

The majority of the barley accessions studied are more easily distinguished with the topo-
logical lens but not with traditional measures, with few exceptions (Fig. 2). Exceptions like
Hannchen, Han River and Palmella Blue have slightly distinctive traditional trait distribu-
tions, so seed size does matter and it is important to take it into account. At the same time,
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we observe accessions like Alpha, Glabron, Minia, and Wisconsin Winter, that are poorly
differentiated with traditional information but report considerably higher classification ac-
curacies whenever using topological information. When looking at a more robust dimension
reduction technique like UMAP, classification accuracy is increased when combined with
size-related information.

The Euler characteristic is a simple yet powerful way to reveal features not readily
visible to the naked eye. There is “hidden” morphological information that traditional and
geometric morphometric methods are missing. The Euler characteristic, and Topological
Data Analysis in general, can be readily computed from any given image data, which makes
it a versatile tool to use in a vast number of biology-related applications. TDA provides
a comprehensive framework to detect and compare morphological nuances, nuances that
traditional measures fail to capture and that remain unexplored using simple geometric
methods. In the specific case of barley seeds presented here, these “hidden” shape nuances
provides enough information to not only characterize specific accessions, but the individual
spikes from which seeds are derived. Our results suggest a new exciting path, driven by
morphological information alone, to explore further the phenotype-genotype relationship.
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