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Abstract
In this work1 we study statistical properties of graph-based algorithms for multi-manifold
clustering (MMC). In MMC the goal is to retrieve the multi-manifold structure underlying a
given Euclidean data set when this one is assumed to be obtained by sampling a distribution
on a union of manifolds M = M1 ∪ · · · ∪ MN that may intersect with each other and
that may have different dimensions. We investigate sufficient conditions that similarity
graphs on data sets must satisfy in order for their corresponding graph Laplacians to
capture the right geometric information to solve the MMC problem. Precisely, we provide
high probability error bounds for the spectral approximation of a tensorized Laplacian on
M with a suitable graph Laplacian built from the observations; the recovered tensorized
Laplacian contains all geometric information of all the individual underlying manifolds. We
provide an example of a family of similarity graphs, which we call annular proximity graphs
with angle constraints, satisfying these sufficient conditions. We contrast our family of
graphs with other constructions in the literature based on the alignment of tangent planes.
Extensive numerical experiments expand the insights that our theory provides on the MMC
problem.
Keywords: multi-manifold clustering, graph Laplacian, spectral convergence, manifold
learning, discrete to continuum limit.

1. Introduction

In this work we study the problem of multi-manifold clustering (MMC) from the perspective
of spectral geometry. Multi-manifold clustering is the task of identifying the structure of
multiple manifolds that underlie an observed data set X = {x1, . . . , xn}, its main challenge
being that in general the underlying manifolds may be non-linear, may intersect with
each other, and may have different dimensions (see Figures 1-3 for some illustrations).
While spectral methods for learning have been analyzed by several authors throughout
the past two decades in settings as varied as unsupervised, semi-supervised, and supervised
learning, less is known about their theoretical guarantees for the specific multi-manifold
clustering problem. We analyze MMC algorithms that are based on the construction of
suitable similarity graph representations for the data and in turn on the spectra of their
associated graph Laplacians. We provide statistical error guarantees for the identification
of the underlying manifolds as well as for the recovery of their individual geometry.

As for most spectral approaches to clustering, we are interested in studying spectral
properties of graph Laplacian operators of the form

∆nu(xi) :=
∑

ωij(u(xi)− u(xj)), xi ∈ X. (1.1)

Here, the ωij are appropriately defined symmetric weights that in general depend on the
proximity of points xi, xj , and importantly, on a mechanism that detects when points
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Figure 1 illustrates two intersecting ellipsoids (two dimensional). A good multi-manifold
clustering algorithm must identify the two underlying ellipsoids. Figure 2 and Figure 3
show the spectral clustering with standard ε-proximity graph and annular proximity graph
with angle constraint, respectively; see following discussion.

belong to different manifolds even if lying close to each other. Once the graph Laplacian
is constructed we follow the spectral clustering algorithm: the first p eigenvectors of ∆n

(denoted ψ1, . . . , ψN ) are used to build an embedding of the data set X into Rp:

xi ∈ X 7−→

ψ1(xi)
...

ψN (xi)

 ∈ Rp.

In turn, with the aid of a simple clustering algorithm such as k-means the embedded data
set is clustered. A successful algorithm will produce clusters that are in agreement with the
different manifolds underlying the data set. It is essential to select the weight ωij to make
spectral clustering algorithm work well as standard proximity graphs do not work well in
MMC problem. See Figure 1-3 as an illustration.

2. Setup

To start making our results more precise, let us suppose that the data set X is obtained by
sampling a distribution µ supported on a set M of the form M = M1 ∪ · · · ∪MN where
the Ml are smooth compact connected manifolds with no boundary that for the moment
are assumed to have the same dimension m; the manifoldsMl may have nonempty pairwise
intersections, but these are assumed to have measure zero relative to the volume forms of
each of the manifolds involved. The distribution µ is assumed to be a mixture model taking
the form

µ = w1ρ1dvolM1 + · · ·+ wNρNdvolMN
(2.1)

for smooth density functions ρl :Ml → R and positive weights wi that add to one; henceforth
we use dvolMl

to denote the integration with respect to the Riemannian volume form
associated to Ml. A tensorized Laplacian ∆M acting on functions f on M (which will



be written as f = (f1, . . . , fN ), where fl :Ml → R) can be defined according to

∆Mf := (w1∆M1f1, . . . , wN∆MN
fN ), (2.2)

where ∆Ml
is a Laplacian operator mapping regular enough functions fl : Ml → R into

functions ∆Mfl :Ml → R according to

∆Ml
fl = − 1

ρl
divMl

(
ρ2l∇Ml

fl
)
.

In other words, the operator ∆M acts in a coordinatewise fashion effectively treating each
manifoldMi independently. It is then straightforward to show that eigenfunctions of ∆M are
spanned by functions of the form (0, . . . , fl, . . . , 0) for some l, where fl is an eigenfunction
of ∆Ml

. This means that the spectrum of ∆M splits the geometries of the Ml, and in
particular, the different Ml can be detected by retrieving the eigenfunctions with zero
eigenvalue.

3. Result

Let’s begin with two sufficient conditions that the weighted graph must satisfy to solve MMC
problem.

Definition 3.1 (Fully inner Connected graphs). Let X = x1, . . . , xn be samples from µ as
defined in (2.1). A weighted graph (X,ω) is said to be fully inner connected relative to ε+
and ε− which converge to zeros as n→∞ if with probability 1−C1(n), where C1(n)→ 0 as
n → ∞, for any pair of points xi, xj belonging to the same manifold Mk we have ωxi,xj =
ω
ε+,ε−
xi,xj .

Definition 3.2 (Sparsely Outer Connected graphs). Let X = x1, . . . , xn be samples from µ
as defined in (2.1), and let (X,ω) be a weighted graph. Let Nsl be the number of connections
between xi ∈Ms and xj ∈Ml such that ωij > 0, and let

N0 := max
l 6=s
{Nls}.

The graph is said to be sparsely outer connected relative to ε+ and ε− converging to zero
as n → ∞ if with probability one, N0

n2(εm+2
+ −εm+2

− )
→ 0 as n → ∞. We recall that m =

maxl=1,...,N ml.

Full inner connectivity condition guarantees that points within one manifold connect to
each other with high probability, and sparse outer connectivity condition guarantees that
the number of connections between points from different manifolds cannot be too large.

Our first main results (Theorem 2.5 and Theorem 2.7) say that provided that the
weights ωij defining the graph Laplacian operator ∆n in (1.1) satisfy full inner connectivity
and sparse outer connectivity, then the eigenvalues (appropriately scaled) and eigenvectors
of ∆n approximate the eigenvalues and eigenfunctions of the tensorized Laplacian ∆M;
we obtain high probability quantitative bounds for the error of this approximation. The
bottom line is that our results imply that the spectral methods studied here are guaranteed,
at least for large enough n, to recover the underlying multi-manifold structure of the data;



see Figure 3 for an illustration. Our work extends the growing literature of works that study
the connection between graph Laplacians on data sets and their continuum analogues. This
literature has mostly focused on the smooth setting where multiple intersecting manifolds
are not allowed.

In our second main result (Theorem 2.8) we present some results for the case when the
dimensions of the manifolds Mi do not agree. In this more general setting, the spectrum
of the graph Laplacian ∆n does not recover the tensorized geometry captured by ∆M as
introduced earlier, but rather, only the tensorized geometry of the manifolds with the largest
dimension, effectively quotienting out the geometric information of manifolds with dimension
strictly smaller than the maximum dimension. Detailed discussions and proofs can be seen
in Trillos et al. (2021).

The theory above showed that if two sufficient conditions are satisfied for the weighted
graph, then spectral clustering is guaranteed to be consistent for MMC. In the following,
We also present a graph construction that we refer to as annular proximity graph with angle
constraint that satisfies full inner connectivity and sparse outer connectivity conditions.
Numerical experiments support and expand our insights on the algorithm’s behavior.

4. Contribution and Discussion

• We analyze graph Laplacians on families of proximity graphs when the nodes of the
graphs are random data points that are supported on a union of unknown intersecting
manifolds. The manifolds may all have different dimensions.

• We introduce two sufficient conditions that similarity graphs must satisfy in order to
recover, from a graph Laplacian operator, the geometric information of the individual
smooth manifolds underlying the data set. These conditions are referred to as full
inner connectivity and sparse outer connectivity.

• We introduce and analyze annular proximity graphs and their effect on multi-manifold
clustering. These are simple extensions of ε-proximity graphs that nonetheless can be
shown to be, theoretically and numerically, better than the vanilla ε-graphs for multi-
manifold clustering.

• We analyze a family of annular proximity graphs with angle constraints. This family
is shown to satisfy the full inner connectivity and sparse outer connectivity conditions
when their parameters are tuned appropriately. We contrast this construction with
other constructions such as those based on local PCA which in general do not satisfy
the full inner connectivity condition.

• Through numerical examples and some heuristic computations we provide further
insights into the use of spectral methods for multi-manifold clustering.
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