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Abstract

Graph neural networks (GNNs) are a powerful architecture for tackling graph learning tasks, yet have
been shown to be oblivious to eminent substructures such as cycles. We present TOGL, a novel layer
that incorporates global topological information of a graph using persistent homology. TOGL can be
easily integrated into any type of GNN and is strictly more expressive in terms of the Weisfeiler–Lehman
graph isomorphism test. Augmenting GNNs with our layer leads to improved predictive performance
for graph and node classification tasks, both on synthetic data sets (which can be classified by humans
using their topology but not by ordinary GNNs) and on real-world data.

1 Introduction

Graphs are a natural description of structured data sets in many domains, including bioinformatics,
image processing, and social network analysis. Numerous methods address the two dominant graph
learning tasks of graph classification or node classification. In particular, graph neural networks (GNNs)
describe a flexible set of architectures for such tasks and have seen many successful applications over
recent years [15]. At their core, many GNNs are based on iterative message passing schemes. Since these
schemes are collating information over the neighbours of every node, GNNs cannot necessarily capture
certain topological structures in graphs, such as cycles [1]. These structures, however, are relevant for
certain applications, such as the analysis of molecular graphs, whose classification necessitates knowledge
about connectivity information [7, 12].

In this paper, we address this issue by proposing a Topological Graph Layer (TOGL) that can be
easily integrated into any GNN to make it ‘topology-aware.’ Our method is rooted in the nascent field
of topological data analysis (TDA), which focuses on describing coarse structures that can be used to
describe the shape of complex structured and unstructured data sets. We thus obtain a generic way to
augment existing GNNs and increase their expressivity in graph learning tasks. Figure 1 provides a
motivational example that showcases the potential benefits of using topological information: (i) high
predictive performance is reached earlier for a smaller number of layers, and (ii) learnable topological
representations outperform fixed ones if more complex topological structures are present in a data set.

2 Computational Topology

We consider undirected graphs of the form G = (V, E) with a set of vertices V and a set of edges E ⊆ V×V.
The basic topological features of such a graph G are the number of connected components β0 and the
number of cycles β1. These counts are also known as the 0-dimensional and 1-dimensional Betti numbers,
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Figure 1: As a motivating example, we introduce two topology-based data sets whose graphs can be
easily distinguished by humans; the left data set can be trivially classified by all topology-
based methods (since access to β0 or β1 is sufficient for classification), while the right data set
necessitates learnable topological features. We show the performance of using a GCN and TOGL,
our method, as compared to a ‘pure’ GCNs, the Weisfeiler–Lehman (WL) graph kernel, and
a static topological method (PH) based on a degree filtration of a graph. When there is more
than one layer, we use TOGL as the second layer, while all remaining layers are regular GCN
layers (we still denote this hybrid model by ‘TOGL’ in the legend).

respectively, and can be computed efficiently. Betti numbers are invariant under graph isomorphism [5,
pp. 103–133]. The expressivity of Betti numbers can be increased by assuming the existence of a graph
filtration, i.e. a sequence of nested subgraphs of G such that ∅ = G(0) ⊆ G(1) ⊆ G(2) ⊆ · · · ⊆ G(n−1) ⊆
G(n) = G. A filtration makes it possible to obtain more insights into the graph by ‘monitoring’ topological
features of each G(i) and calculating their topological relevance, also referred to as their persistence. If
a topological feature appears for the first time in G(i) and disappears in G(j), we assign this feature a
persistence of j − i. Equivalently, we can represent the feature as a tuple (i, j), which we collect in a
persistence diagram D. This process was formalised and extended to a wider class of structured data
sets, namely simplicial complexes, and is known under the name of persistent homology. One of its core
concepts is the use of a filtration function f : V → Rd, with d = 1 typically, to accentuate certain structural
features of a graph. This replaces the aforementioned tuples of the form (i, j) by tuples based on the values
of f , i.e. ( fi, f j). Persistent homology has shown excellent promise in different areas of machine learning
research (see Hensel et al. [6] for a recent survey); choosing or learning an appropriate filtration function f
is crucial for high predictive performance [7, 18].

Notation. We denote the calculation of persistence diagrams of a graph G under some filtration f by
ph(G, f ). This will result in two persistence diagrams D0,D1, containing information about topological
features in dimension 0 (connected components) and dimension 1 (cycles). The cardinality of D0 is equal
to the number of nodes n in the graphs and each tuple in the 0-dimensional diagram is associated with the
vertex that created it. The cardinality of D1 is the number of cycles.

3 TOGL: A Topological Graph Layer

TOGL is a new type of graph neural network layer that is capable of utilising multi-scale topological
information of input graphs. In this section, we give a brief overview of the components of this layer before
discussing algorithmic details, theoretical expressivity, computational complexity, and limitations. The
layer takes as input a graph G = (V, E) equipped with a set of n vertices V and a set of edges E, along with
a set of d-dimensional node attribute vectors x(v) ∈ Rd for v ∈ V. These node attributes can either be node
features of a data set or hidden representations learnt by some GNN. We employ a family of k vertex filtra-
tion functions of the form fi : Rd → R for i = 1, . . . , k. Each filtration function fi can focus on different prop-
erties of the graph. The image of fi is finite and results in a set of node values a(1)i < · · · < a(n)i such that

the graph G is filtered according to ∅ = G(0)
i ⊆ G(1)

i ⊆ · · · ⊆ G(n)
i = G, where G(j)

i =
(

V(j)
i , E(j)

i

)
, with

2



V(j)
i :=

{
v ∈ V | fi

(
x(v)

)
≤ a(j)

i

}
, and E(j)

i :=
{

v, w ∈ E | max
{

fi

(
x(v)

)
, fi

(
x(w)

)}
≤ a(j)

i

}
. Given this

filtration, we calculate a set of persistence diagrams, i.e. ph(G, fi) =
{
D(0)

i , . . . ,D(l)
i

}
. We fix l = 1 (i.e.

we are capturing connected components and cycles) to simplify our current implementation, but our
layer may in principle be extended to arbitrary values of l. In order to benefit from representations that
are trainable end-to-end, we use an embedding function Ψ(l) :

{
D(l)

1 , . . . ,D(l)
k

}
→ Rn′×d for embedding

persistence diagrams into a high-dimensional space that will be used to obtain the vertex representations,
where n′ is the number of vertices n if l = 0 and the number of edges if l = 1. This step is crucial as it enables
us to use the resulting topological features as node features, making TOGL a layer that can be integrated
into arbitrary GNNs. We experimented with different embedding functions Ψ; the results described in this
work are based on a DeepSets approach [17], making it possible to take interactions between different
points in the persistence diagram into account. We compute our family of k vertex-based filtrations using
Φ : Rd → Rk, an MLP with a single hidden layer, such that fi := πi ◦Φ, i.e. the projection of Φ to the ith
dimension. We apply Φ to the hidden representations x(v) of all vertices in the graph. Moreover, we treat
the resulting persistence diagrams in dimension 0 and 1 differently. For dimension 0, we have a bijective
mapping of tuples in the persistence diagram to the vertices of the graph, which was previously exploited
in topological representation learning [10]. Therefore, we aggregate Ψ(0) with the original node attribute
vector x(v) of the graph in a residual fashion, i.e. x̃(v) = x(v) + Ψ(0)

(
D(0)

1 , . . . ,D(0)
k

) [
v
]
, where Ψ(0)[v]

denotes taking vth row of Ψ(0) (i.e the topological embedding of vertex v). The output of our layer for
dimension 0 therefore results in a new representation x̃(v) ∈ Rd for each vertex v, making it compatible
with any subsequent (GNN) layers. By contrast, Ψ(1) is pooled into a graph-level representation, to be
used in the final classification layer of a GNN. This is necessary because there is no bijective mapping to
the vertices, but rather to edges.

Expressive Power. The expressive power of graph neural networks is well-studied [3, 16] and typically
assessed via the iterative Weisfeiler–Lehman label refinement scheme, denoted as WL[1]. Given a graph
with an initial set of vertex labels, WL[1] collects the labels of neighbouring vertices for each vertex in a mul-
tiset and ‘hashes’ them into a new label, using a perfect hashing scheme so that vertices/neighbourhoods
with the same labels are hashed to the same value. This procedure is repeated and stops either when a
maximum number of iterations has been reached or no more label updates happen. The result of each
iteration h of the algorithm for a graph G is a feature vector φ

(h)
G that contains individual label counts.

Originally conceived as a test for graph isomorphism [14], WL[1] has been successfully used for graph
classification [11]. Surprisingly, Xu et al. [16] showed that standard graph neural networks based on
message passing are no more powerful than WL[1]. It turns out that persistent homology (and TOGL by
transitivity) extend the expressivity of WL[1]. We first state a ‘lower-bound’ type of result.

Theorem 1. Persistent homology is at least as expressive as WL[1], i.e. if the WL[1] label sequences for two
graphs G and G′ diverge, there exists an injective filtration f such that the corresponding 0-dimensional persistence
diagrams D0 and D′0 are not equal.

Proof sketch. We first assume the existence of a sequence of WL[1] labels and show how to construct a
filtration function f from this. While f will result in persistence diagrams that are different, thus serving to
distinguish G and G′, it does not necessarily satisfy injectivity. We therefore show that there is an injective
function f̃ that is arbitrarily close to f and whose corresponding persistence diagrams D̃0, D̃′0 do not
coincide. Please refer to the extended version of this preprint1 for more details.

To prove that persistent homology and TOGL are more expressive than a GCN, we show that there are
pairs of graphs G, G′ that cannot be distinguished by WL[1] but that can be distinguished by ph(·) and by
TOGL, respectively: let G be a graph consisting of the disjoint union of two triangles, i.e. , and let G′ be
a graph consisting of a hexagon, i.e. . WL[1] will be unable to distinguish these two graphs because all
multisets in every iteration will be the same. Persistent homology, by contrast, can distinguish G from G′

1https://arxiv.org/abs/2102.07835
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Table 1: Predictive performance of our method. We depict the test accuracy obtained on various benchmark
data sets when only considering structural information (i.e. the network has access to uninformative
node features).

Graph classification

METHOD DD ENZYMES MNIST PROTEINS

GAT-4 63.3±3.7 21.7± 2.9 63.2±10.4 67.5± 2.6
GIN-4 75.6±2.8 21.3± 6.5 83.4± 0.9 74.6± 3.1

GCN-4 (baseline) 68.0±3.6 22.0± 3.3 76.2± 0.5 68.8± 2.8
GCN-3-TOGL-1 75.1±2.1 30.3± 6.5 84.8± 0.4 73.8± 4.3
GCN-3-TOGL-1 (static) 68.0±2.4 23.7± 5.4 82.9± 0.0 71.2± 5.1

Node classification

CLUSTER PATTERN

16.7± 0.0 58.3±8.8
16.4± 0.1 84.8±0.0

16.7± 0.0 85.6±0.0
16.8± 0.0 86.7±0.0
16.8± 0.0 85.8±0.0

using their Betti numbers. We have β0(G) = β1(G) = 2, because G consists of two connected components
and two cycles, whereas β0(G′) = β1(G′) = 1 as G′ only consists of one connected component and one
cycle. Together with Theorem 1, this example implies that persistent homology is strictly more powerful
than WL[1].

4 Experiments

Next to the synthetic data sets shown in Figure 1, we also applied our method to standard graph/node
classification benchmarking data sets, albeit with a slight ‘twist:’ we remove all node attribute features
and replace them by random features. This ensures that classification performance is driven only by
topological information and nothing else. We compare a hybrid model, consisting of a GCN with
three layers and a single TOGL layer as the second layer,2 with several well-known graph neural network
architectures [2, 8, 13]. Table 1 depicts the results for graph and node classification tasks on such graphs; we
observe that the performance of GCN-3-TOGL-1 always outperforms the GCN-4 baseline. For MNIST, the
gains are substantial, with an increase of more than 8%, but other data sets exhibit similar improvements.
This demonstrates the utility of TOGL in making additional structural information available to improve
classification performance. While this was not the primary goal of this experiment, we also see that
we perform favourably compared to other graph neural networks (in the case of ENZYMES, we even
outperform them by a margin of 8%).

5 Conclusion

We presented TOGL, a generically-applicable layer that incorporates topological information into any
GNN architecture. We proved that TOGL, due to its filtration functions (i.e. input functions) being
learnable, is more expressive than WL[1], the Weisfeiler–Lehman test for graph isomorphism. On data sets
with pronounced topological structures, we found that our method helps a GCN achieve high predictive
performance. For future work, we are most interested in the investigation of additional regularisation
strategies for improving the training process. Furthermore, we hypothesise that the use of different
filtration types [9], together with improved persistent homology algorithms [4], will prove beneficial.

2This hybrid model has approximately the same number of parameters as its comparison partner, a GCN with four layers, thus
ensuring that the comparison is fair.
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International Conference on Learning Representations, 2018.

[14] B. Weisfeiler and A. A. Lehman. The reduction of a graph to canonical form and the algebra which appears
therein. Nauchno–Technicheskaja Informatsia, 9:12–16, 1968.

[15] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learning Systems, 32(1):4–24, 2021.

[16] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In International Conference
on Learning Representations, 2019.

[17] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep sets. In Advances in
Neural Information Processing Systems, volume 30, pages 3391–3401. Curran Associates, Inc., 2017.

[18] Q. Zhao and Y. Wang. Learning metrics for persistence-based summaries and applications for graph classification.
In Advances in Neural Information Processing Systems 32 (NeurIPS), pages 9855–9866. Curran Associates, Inc., 2019.

5


	Introduction
	Computational Topology
	TOGL: A Topological Graph Layer
	Experiments
	Conclusion

