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ABSTRACT

We study the problem of sweeping every point in a polygon using a variable-length line segment. The
entire line segment is constrained to stay inside the polygon at all times. The endpoints can move
with different (bounded) speeds. Our objective is to minimize makespan: find a pair of trajectories for
the endpoints so that the sweeping can be concluded as soon as possible. If the polygons are simple,
we present a polynomial time (4 + ε)-approximation algorithm.

1 Introduction

Given a polygon P in the plane, we want to sweep every point in it using a line segment. A point is consider swept only
if it is touched by the segment. One can consider there to be two agents moving within P that are required to remain
covisible at all times; the agents are the endpoints of a sweeping line segment, which is required to sweep over every
point of P . Initially, the agents are assumed to start at the same position, s ∈ P . Without the loss of generality, we can
also assume that each endpoint can move with speed at least 0 (stationary) and at most 1. The general goal is to find
a good sweeping solution that covers every point in P while minimizing some cost functions. These can be overall
sweeping duration, the maximum distance traversed between the two agents, or total distance traveled. In this abstract,
we are focusing on finding a short makespan, i.e. minimizing the sweeping duration.

This problem is motivated by the problem introduced in [1], which involves sweeping a polygon with a connected chain
of guards. The main difference is, in that problem, the guards at the beginning and the end of the chain must always
stay on the boundary of P at all times. With such a setup, it is possible for the chain to always catch any moving target
inside the polygon, as the chain maintains a “cleaned” portion of the domain.

Our current problem is similar but with limited resource: we only have two agents (guards), but we still want to
efficiently sweep the polygon, searching for a static target. A closely related problem is to minimize the sum of distances
traveled by two endpoints, which can be solved in polynomial time [4]. The same authors later provided an O(n2)
algorithm to minimize the maximum length of the line segment [5]. Another related problem is the watchman route
problem, in which an agent moves in order to see every point in the domain; see, e.g., [2].

In this abstract, our main contribution is a polynomial time approximation algorithm for any simple polygon. We also
present our ideas behind proving the hardness of the version with holes and finding an approximation solution for the
case with multiple line segments.

2 Minimizing makespan in a simple polygon

In this version, we want to minimize the overall time that is needed for the agents to finish sweeping every point in P .
This can be seen as minimizing the maximum time spent by each agent (endpoint of the segment) during the sweep
schedule.

We begin with a straightforward observation:
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Lemma 2.1. To completely sweep P , it is necessary that all convex vertices must be visited by at least one endpoint.

This also applies to polygon with holes. The same is not true for reflex vertices, as those can be swept by the interior
of a sweeping segment (when the reflex vertex falls interior to the segment, and the segment becomes tangent at the
vertex). Moreover, it is possible for the line segment to sweep an edge of P without requiring any endpoint to move
along that edge. For example, the line segment can already be parallel to an edge, to sweep that edge each endpoint
only needs to move to its closest vertex of that edge. However, in any optimal solution, the segment can only sweep an
edge in such a way at most once, which leads to the following lemma:
Lemma 2.2. Let T be the minimum geodesic Steiner tree spanning every convex vertex of P , then OPT ≥ 1

2 |T |.

Proof. Since the line segment starts at the same location at the beginning, the trajectories of the two endpoints would
make a connected graph. Using Lemma 2.1, this graph must connect all convex vertices. It follows that OPT ≥ 1

2 |T |
by the definition of T .

Before introducing our approximation algorithm, the following definition is necessary:
Definition 2.1. A polygon is called a crescent if it consists of one convex chain and one reflex chain, both chains
connect at their two vertices at the ends.

Such a polygon can be swept by one segment in time at most equal to the length of the convex chain, i.e. the longer
chain. To sweep it, the segment will start at one of the shared vertices of the chains and will continue sweeping until it
reaches the other vertex. In the entire motion, one endpoint of the segment will always stay on the convex chain and the
other on the reflex chain. This type of polygon is employed in proving the following theorem:
Theorem 2.1. There exists a (4 + ε)-approximation algorithm that can be computed in polynomial time.

vi vj

Figure 1: A crescent formed by the minimum geodesic Steiner tree T , colored in blue, and a reflex chain vivj , colored
in black. This type of subpolygon will always be sweepable by the line segment, depicted in red, with one endpoint
moving along the path of T connecting vi to vj and the other along the corresponding path of the boundary.

Proof. Recall that T is the minimum geodesic Steiner tree that spans every convex vertices of P . Any two consecutive
convex vertices vi, vj (with a possible reflex chain in between), along with the edges of T connecting vi to vj , will
form a crescent. See Figure 1 for an illustration. The reason is that the path in T connecting the two convex vertices
will always be left-turning (if we are traversing the polygon in clockwise order) since T is a minimum Steiner tree. The
subpolygon made of this path of T , which is a convex chain, and the reflex chain from vi to vj will be a crescent.

Using the FPTAS from [3] we can compute a (1 + ε′)-approximate minimum Steiner tree spanning all convex vertices
in any simple polygon. The running time is O(nε′k

2(nε′ + k)), where nε′ is the number of vertices of the polygon plus
the number of grid points used in the approximation and k is the number of convex vertices. In case a subpolygon is not
a crescent, i.e. there exists a path from vi to vj that is not always left-turning, then the corresponding part of the tree is
locally optimal. We can fix that by adjusting any right-turning vertex so that it is left-turning, or at least colinear with
the two vertices before and after it.

Our sweep schedule will be as follows: starting from any convex vertex, the two agents will sweep from one convex
vertex to the next using the corresponding walkable subpolygon generated by the above method. One agent will
always follow the edges of T while the other agent will follow the boundary of the polygon. The total duration of
this sweeping schedule will be the time it takes an agent, moving at full speed, to traverse twice the length of the tree:
2(1 + ε′)|T | ≤ 4(1 + ε′)OPT . If we set ε′ = ε/4 then the theorem follows.
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Figure 2: An example in which the optimal solutions for the makespan minimization, shown in the middle, and
maximum distance minimization, shown on the right, are different. This assumes that both endpoints start at the same
location, depicted as a green dot in the left figure. In the makespan minimization solution, the green endpoint will
continue to move even if its traveled distance is already longer than |∂P |/2. In contrast, if minimizing the maximum
distance traveled by an agent, the solution has each agent traveling distance |∂P |/2, while the overall duration of the
sweep is greater than that of the minimum makespan solution.

It is interesting to note that minimizing the makespan of the sweeping motion is not the same as minimizing the
maximum distance traveled by each endpoint. This can be seen in the example shown in Figure 2. The problem of
min-maxing the distance traveled can be useful if we consider each endpoint as an agent with limited fuel, in that case
we might not want one agent to travel much more than the other.

3 Sweeping a polygon with holes

The case of sweeping a polygon with holes is work in progress. In the talk and full paper, we expect to be able to show:
Claim 3.1. The problem of minimizing the makespan to sweep a polygon with holes is NP-hard, even if the holes are
convex.

The (still incomplete) proof attempt uses a reduction from Hamiltonian path in a (triangular) grid graph.

Given the hardness of this case, we explore polynomial time approximation algorithms, based on lower bounds in terms
of the total length of the boundary of the domain, and a minimum Steiner tree that spans all holes.

4 Sweeping with multiple line segments

In this problem, we are given k segments (2k endpoints), each of which can start at any point on the boundary of P . We
again seek to minimize the makespan of the sweeping schedule, i.e. minimizing the maximum time traveled by any
endpoint of any segment. If we apply the reasoning similar to Lemma 2.2, then one lower bound of the optimal solution
to this problem is (|∂P | −

∑
e∈Ek

|e|)/(2k) where Ek is the set of k largest edges of P . This bound implies that we
can find k largest edges that also partition the boundary of P into k parts of equal length. But that might not always be
true, hence we believe that this bound could be improved.

Our approach to approximating OPT is to reuse the result in Theorem 2.1. We can partition the minimum geodesic
Steiner tree T into k smaller trees of the same length. For each such tree, we can apply the same motion plan for each
line segment and let them sweep from one crescent to another.
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