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Abstract

Finding a comprehensive way to compare two road networks has been a challenge for quite a long
time. One frequently-used comparison uses a discrete (easy to compute) sample from each graph to
define a similarity measure based on a correspondence between the samples. In practice, this takes into
account both the geometry and the topology of the graphs. However, this sampling approach introduces
many variables along the way and can result in undesirable correspondences. In this paper, we introduce
a continuous alternative to this method that uses Fréchet distance in a length-preserving setting.

1 Introduction

Finding a comprehensive way to compare two roadmaps or embedded graphs has been a challenge for quite
a long time. One discrete way that has been used frequently in the literature is the graph sampling method.
Graph sampling was originally defined in [3] as a sampling-based comparison between graphs embedded
in the plane that takes into account both the geometry and the topology of the immersed graphs. Graph
sampling follows two steps: sampling two embedded graphs with points and matching the corresponding
points to each other in a one-to-one manner. The proportion of the matched pairs can be used later to
explain the similarities and differences between the two said graphs. Despite its simple definition, Graph
sampling introduces many variables along the way that can affect the final results. Sampling interval,
sampling function, matching function and whether to take bearing into consideration are some examples of
these variables. Furthermore, while graph sampling is a fairly effective approach for map comparison, it is
still a discrete method and simply counting the number of matched samples is not a reliable measurement
in many cases. A possible artifact of this method is that a single road can be matched to several roads
(see Fig. 1). Another common problem with graph sampling on reconstructed maps is finding a suitable
ground truth map that only contains roads that are covered in the GPS data. This particular issue results
in inconsistent evaluations among experiments in the literature [2].

In this paper we introduce a continuous alternative to this method that uses Fréchet distance in a length-
preserving setting and avoids the issues that are mentioned above. For this purpose, one needs to match
(continuous) segments of two graphs. There is a related work that matches segments of two curves using
Fréchet distance, the so-called partial Fréchet matching [4]. The authors give a polynomial-time dynamic
programming algorithm if L1 or L∞ are used as the underlying metrics. Here, we put a length-preserving
constraint on the matched segments and our goal is to maximize the total length of them. Furthermore, we
generalize this definition for graphs in R2.

2 Measuring Length-Preserving Fréchet Correspondence

In this paper, we consider paths and graphs in R2, where we define the distance between two points x and y
as the two-norm of their difference, denoted ||x− y||. We denote the (open) metric ball centered at x ∈ R2

with radius δ ∈ R≥0 by: B(x, δ) := {y ∈ R2 | ||x− y|| < δ}.
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Figure 1: Graph sampling on two road maps G and H shown with blue and red respectively. Cyan and
purple points are matched samples on G and H, while orange points indicate samples on G that are not
matched. A magenta line shows a matching between a pair of samples.

Let G be the set of all pairs (G,φ), where G is an abstract graph and φ : G → R2 is a continuous
map, up to the following equivalence: we say two pairs (G,φG) and (H,φH) are equivalent if there exists a
homeomorphism h : G→ H such that φG = φH ◦ h. Throughout, we assume that each abstract graph G is
comprised of a finite set of vertices, denoted V (G), and a finite set of edges, denoted by E(G). Given two
points x, y ∈ G, we measure their distance by considering all paths in G and find the path whose Lebesgue
measure (or, length) under φ is smallest:

L(x, y; (G,φ)) := inf
p : [0,1]→G

len(φ(p)),

where p ranges over all continuous maps such that p(0) = x and p(1) = y. We measure the length of (G,φ)
as the total Lebesgue measure of all edges in the graph: len(G) =

∑
e∈E(G) lenφ(e).

Let (A, φA), (B,φB) ∈ G. Let f : A → B be a function that is homeomorphic onto its image. We
say that f is length-preserving if for each x, y ∈ A, the length of the shortest path in (A, φA) from φA(x)
to φA(y) is equal to the length of the shortest path in (B,φB) from φB(f(x)) to φB(f(y)). More formally, f
is length-preserving iff for all x, y ∈ A, L(x, y; (A, φ)) = L(f(x), f(y); (B,φB)).

Let (G,φG), (H,φH) ∈ G. Let ε > 0. Let C be a connected subgraph of G, and let h : C → H be a
continuous map that is homeomorphic onto its image. We measure the length of the subgraph of C that
maps within ε of h(C). More formally, let

Cεh := {x ∈ C | ||φG(x)− φH(h(x))|| ≤ ε and ∃δ > 0: h|B(x,δ) is length-preserving}. (1)

We can interpret this as a subgraph of (G,φG). Specifically, (Cεh, φG|Cε
h
) is in G, but we note that it may not
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Figure 2: Free-space diagram of two curves A and B for a given ε. The green (slope-one) line segments
correspond to length-preserving matchings. e is a line segment on A that was matched with h(e) on B.

be a path-connected graph. To highlight the relation between length-preserving and paths in the free space
diagram, consider Fig. 2. Similar to [4], in this example, we are looking for a monotone path from bottom-
left to top-right but only maximizing the length of slope-one segments in the white space. A line segment l
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indicates a length-preserving matching because the corresponding matched line segments, e and h(e) on the
two curves have the same length if and only if l is slope-one. Fig. 3 shows an example of Cεh. Note that Cεh
itself is not necessarily a connected graph.
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Figure 3: Computing Cεh on two given graphs, G and H. C is a connected subgraph of G. Ch := h(C) is a
subgraph of H such that C and Ch are homeomorphic. For a given ε, dark blue segments are Cεh.

Given this set-up, the length of the maximum length-preserving Fréchet correspondence is

LFC(G,H; ε) 7→ sup
C⊂G

sup
h:C 7→H

len(Cεh).

While Cεh only requires small portions of h to be length-preserving, we show that indeed all connected
components are length-preserving.

Lemma 1 (Path-Connected Components Are Length-Preserving). Let Cεh be defined as in Equation (1).
Then, each restriction of h to a path-connected component of Cεh is a length-preserving map.

Proof. Let C̃ be a path-connected component of Cεh. Let x, y ∈ C̃. Since C̃ is a path-connected space,

let p : [0, 1]→ C̃ be a path that starts at x and ends at y. Then, by the definition of Cεh, for each t ∈ [0, 1],
there exists a δt > 0 such that h restricted to B(p(x), δt) is length-preserving. Let U := {B(p(x), δt)}t∈[0,1].
Since Im(p) is a compact subspace of R2, there exists a finite subcover Û of U . Then, there exists a

decomposition of p such that each subpath lies entirely in at least one open set in Û . Let {pi}ni=1 be one

such decomposition. Then, we know that len(p) =
∑
i len pi. Since each Im pi is contained in some U ∈ Û

and since h restricted to U is length-preserving, we know that len pi = lenh(pi) = lenh(p). Hence, len(p) =
len(h(p)) for each path from x to y, which means that L(x, y; (G,φG)) = L(h(x), h(y); (H,φH). Thus, we

have shown that h restricted to C̃ is length-preserving, as was to be shown.

3 NP-Hardness

Unfortunately, deciding whether an optimal Length-Preserving Fréchet Correspondence is above a given
threshold is NP-hard.

Theorem 2 (Maximum Length-Preserving Fréchet Correspondence is NP-hard). Deciding LFC(G,H; ε) >
L is NP-hard, even if G consists of only one edge and H is a plane graph.

Proof. We reduce from the Hamiltonian path problem in grid graphs, which is known to be NP-hard [5],
even for induced grid graphs of degree at most three [6]. The vertex set of such a grid graph is a finite subset
of Z2, and there is an edge between two vertices u, v if and only if ‖u− v‖ = 1.

Given such a grid graph H ′ = (V ′, E′), we construct the graph H as follows: for every vertex we add an
edge to a new degree-1 vertex at distance > 1, see Figure 4. Formally, let V ′′ = V ′+ (3/4, 3/4) be the set V ′

translated by (3/4, 3/4) and E′′ = {(v′, v′′) ∈ V ′ × V ′′ | v′′ = v′ + (3/4, 3/4)}. We note that the edges in E′′
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Figure 4: A grid graph H ′ with Hamiltonian path in green. The graph H and the image of G corresponding
to the Hamiltonian path.

have length
√

2 · 3/4 ≈ 1.06. We choose H = (V ′ ∪ V ′′, E′ ∪E′′). Without loss of generality, we can assume
that the coordinates of the vertices of H are between 0 and n = |V ′| > 1, since we can assume that H ′ is
connected. Let G consist of only one edge (0, n). We choose ε = n. We claim that if H ′ has a Hamiltonian
path then LFC(G,H; ε) = n+ 1, and otherwise LFC(G,H; ε) < n+ 1/5. This then implies the theorem.

We have chosen ε sufficiently large such that h can map G onto any simple path in H (not necessarily
ending at vertices). If H ′ has a Hamiltonian path, then we can map G length-preserving onto the correspond-
ing path in H extended by parts (of length 1) of edges in E′′ at the beginning and end. Thus, LFC(G,H; ε)
is the length of the edge (0, n), i.e, n+ 1. If H ′ does not have a Hamiltonian path, then the longest simple
path in H ′ that starts and ends at vertices has length at most n − 2. This implies that the longest simple
path in H, not necessarily ending at vertices, has length at most n− 2 + 2

√
2 · 3/4 ≈ n+ 0.12 < n+ 1/5.

4 Discussion

For the simpler setting of comparing two curves, we expect that the framework from [4] can be applied
to develop a dynamic programming algorithm for computing the length of an optimal correspondence for
a given ε > 0. Similar to [4], we also need to compute a partial matching of maximum length inside
the free space, just that we only measure the length-preserving portions. If we have two points (x, y)
and (x+ ∆x, y+ ∆y) on boundaries of the white space within a cell, then the the length-preserving portion
that we can achieve between those two points is min(∆x,∆y). Thus, the main difference to [4] is that we
have a piecewise linear function in ∆x and ∆y rather than just ∆x + ∆y. We therefore expect that their
algorithm can be modified to our setting for two curves under the L1 or L∞ distances.

Assuming that we can compute LFC(G,H; ε) by dynamic programming for two curves, we expect that
such an algorithm then generalizes to the case that H is a tree (or even the case that H has small treewidth).
Another interesting case is when G also is a tree; it is related to the subtree isomorphism problem for which
efficient algorithms exist; see e.g., [1].

The original aim of this research was to avoid issues with discontinuities in the graph sampling method.
As an intermediate measure, we could also consider a version of LFC where vertices have to be mapped
to vertices, i.e., a length-preserving discrete Fréchet correspondence. For this measure NP-hardness follows
even more directly, but also the algorithms become much simpler. The hardness proof assumes that there
is a large number of vertices within a distance ε, and it would be interesting to develop algorithms for the
case where the number of points in any ε-ball is constant.
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