
CPS 102

DISCRETE MATHEMATICS

FOR COMPUTER SCIENCE

Spring 2009

Co-instructors:Herbert Edelsbrunner andBrittany Fasy

CPS 102 Spring Semester of 2009

Table of Contents

Introduction 3

I COUNTING 4

1 Sets and Lists 5
2 Binomial Coefficients 8
3 Equivalence Relations 10

Homework Assignments 12

II N UMBER THEORY 13

4 Modular Arithmetic 14
5 Inverses 16
6 Euclid’s Algorithm 18
7 RSA Cryptosystem 20

Homework Assignments 22

III L OGIC 23

8 Boolean Algebra 24
9 Quantifiers 27

10 Inference 29
Homework Assignments 31

IV I NDUCTION 32

11 Mathematical Induction 33
12 Recursion 35
13 Growth Rates 37
14 Solving Recurrence Relations 39

Homework Assignments 41

V PROBABILITY 42

15 Inclusion-Exclusion 43
16 Conditional Probability 45
17 Random Variables 47
18 Probability in Hashing 49
19 Probability Distributions 51

Homework Assignments 53

VI GRAPHS 54

20 Trees 55
21 Tours 58
22 Matching 60
23 Planar Graphs 63

Homework Assignments 66

2

Introduction

Meetings. We meet twice a week for lectures, on Mon-
day and on Wednesday, from 2:50 to 4:05pm, in room
D243 LSRC. We also have a recitation each week on Fri-
day, same time and room as the lectures.

Communication. The course material will be delivered
in the two weekly lectures. A written record of the lec-
tures will be available on the web, usually a day after the
lecture. The web also contains other information, such as
homework assignments, solutions, useful links, etc. The
main supporting text is

BOGART, STEIN, DRYSDALE. Discrete Mathematics for
Computer Science.Key College Publishing, Emeryville, Cali-
fornia, 2006.

Examinations. There will be a final exam (covering the
material of the entire semester) and two midterm. The
weighting of participation, exams, and homework used to
determine your grades is

class participation 10%,
homework 30%,
midterms 30%,
final 30%.

Homework. We have six homeworks scheduled
throughout this semester, one per main topic covered in
the course. The solutions to each homework are due one
and a half weeks after the assignment. More precisely,
they are due at the beginning of the third lecture after the
assignment. The sixth homework may help you prepare
for the final exam and solutions will not be collected.

RULE 1. The solution to any one homework question
must fit on a single page (together with the statement
of the problem).

RULE 2. The discussion of questions and solutions before
the due date is not discouraged, but you must formu-
late your own solution.

RULE 3. The deadline for turning in solutions is 10 min-
utes after the beginning of the lecture on the due date.

Overview. Discrete mathematics provides concepts that
are fundamental to computer science but also other dis-
ciplines. This course emphasizes the computer science
connection through the selection and motivation of topics,
which are grouped in six major themes:

I Counting;

II Number Theory;

III Logic;

IV Induction;

V Probability;

VI Graphs.

3

I COUNTING

Counting things is a central problem in Discrete Mathematics. Once we can count, we can determine the likelihood of a
particular even and we can estimate how long a computer algorithm takes to complete a task.

1 Sets and Lists
2 Binomial Coefficients
3 Equivalence Relations

Homework Assignments

4

1 Sets and Lists

Sets and lists are fundamental concepts that arise in var-
ious contexts, including computer algorithms. We study
basic counting problems in terms of these concepts.

Sorting. A common computational task is to rearrange
elements in order. Given a linear arrayA[1..n] of integers,
rearrange them such thatA[i] ≤ A[i + 1] for 1 ≤ i < n.

for i = 1 to n − 1 do
for j = i + 1 downto 2 do
if A[j] > A[j − 1] then

aux = A[j]; A[j] = A[j − 1]; A[j] = aux
endif

endfor
endfor.

We wish to count the number of comparisons made in this
algorithm. For example, sorting an array of five elements
uses15 comparisons. In general, we make1 + 2 + · · · +
(n − 1) =

∑n−1
i=1 i comparisons.

Sums. We now derive a closed form for the above sum
by adding it to itself. Arranging the second sum in reverse
order and adding the terms in pairs, we get

[1 + (n − 1)] + . . . + [(n − 1) + 1] = n(n − 1).

Since each number of the original sum is added twice, we
divide by two to obtain

n−1
∑

i=1

i =
n(n − 1)

2
.

As with many mathematical proofs, this is not the only
way to derive this sum. We can think of the sum as two
sets of stairs that stack together, as in Figure 1. At the base,
we haven − 1 gray blocks and one white block. At each
level, one more block changes from gray to white, until
we have one gray block andn− 1 white blocks. Together,
the stairs form a rectangle divided inton−1 by n squares,
with exactly half the squares gray and the other half white.
Thus,

∑n
i=1 i = n(n−1)

2 , same as before. Notice that this
sum can appear in other forms, for example,

n−1
∑

i=1

i = 1 + 2 + . . . + (n − 1)

= (n − 1) + (n − 2) + . . . + 1

=

n−1
∑

i=1

(n − i).

Figure 1: The number of squares in the grid is twice the sum
from 1 to 8.

Sets. A set is an unordered collection of distinct ele-
ments. Theunion of two sets is the set of elements that
are in one set or the other, that is,A ∪ B = {x | x ∈
A or x ∈ B}. Theintersectionof the same two sets is the
set of elements that are in both, that is,A ∩ B = {x |
x ∈ A andx ∈ B}. We say thatA andB are disjoint if
A ∩ B = ∅. Thedifferenceis the set of elements that be-
long to the first but not to the second set, that is,A−B =
{x | x ∈ A andx 6∈ B}. Thesymmetric differenceis the
set of elements that belong to exactly one of the two sets,
that is,A⊕B = (A−B)∪(B−A) = (A∪B)−(A∩B).
Look at Figure 2 for a visual description of the sets that

Figure 2: From left to right: the union, the intersection, the dif-
ference, and the symmetric difference of two sets represented as
disks in the plane.

result from the four types of operations. The number of
elements in a setA is denoted as|A|. It is referred to as
thesizeor thecardinality of A. The number of elements
in the union of two sets cannot be larger than the sum of
the two sizes.

SUM PRINCIPLE 1. |A ∪ B| ≤ |A| + |B| with equality
if A andB are disjoint.

To generalize this observation to more than two sets, we
call the setsS1, S2, . . . , Sm a coveringof S = S1 ∪ S2 ∪
. . . ∪ Sm. If Si ∩ Sj = ∅ for all i 6= j, then the covering

5

is called apartition. To simplify the notation, we write
⋃m

i=1 Si = S1 ∪ S2 ∪ · · · ∪ Sm.

SUM PRINCIPLE 2. Let S1, S2, . . . , Sm be a covering
of S. Then, |S| ≤ ∑m

i=1 |Si|, with equality if the cov-
ering is a partition.

Matrix multiplication. Another common computa-
tional task is the multiplication of two matrices. As-
suming the first matrix is stored in a two-dimensional
array A[1..p, 1..q] and the second matrix is stored in
B[1..q, 1..r], we match up rows ofA with the columns
of B and form the sum of products of corresponding ele-
ments. For example, multiplying

A =

[

1 3 2
0 2 4

]

with

B =





0 2 3
1 2 5
4 0 1





results in

C =

[

11 8 20
18 4 14

]

.

The algorithm we use to getC from A andB is described
in the following pseudo-code.

for i = 1 to p do
for j = 1 to r do

C[i, j] = 0;
for k = 1 to q do

C[i, j] = C[i, j] + A[i, k] · B[k, j]
endfor

endfor
endfor.

We are interested in counting how many multiplications
the algorithm takes. In the example, each entry of the re-
sult uses three multiplications. Since there are six entries
in C, there are a total of6 · 3 = 18 multiplications. In
general, there areq multiplications for each ofpr entries
of the result. Thus, there arepqr multiplications in total.
We state this observation in terms of sets.

PRODUCT PRINCIPLE 1. Let S =
⋃m

i=1 Si. If the sets
S1, S2, . . . , Sm form a partition and|Si| = n for each
1 ≤ i ≤ m then|S| = nm.

We can also encode each multiplication by a triplet of inte-
gers, the row number inA, the column number inA which
is also the row number inB, and the column number inB.
There arep possibilities for the first number,q for the sec-
ond, andr for the third number. We generalize this method
as follows.

PRODUCT PRINCIPLE 2. If S is a set of lists of length
m with ij possibilities for positionj, for 1 ≤ j ≤ m, then
|S| = i1 · i2 · . . . · im =

∏m
j=1 ij .

We can use this rule to count the number of cartoon char-
acters that can be created from a book giving choices for
head, body, and feet. If there arep choices for the head,q
choices for the body, andr choices for the legs, then there
arepqr different cartoon characters we can create.

Number of passwords. We apply these principles to
count the passwords that satisfy some conditions. Sup-
pose a valid password consists of eight characters, each
a digit or a letter, and there must be at least two digits.
To count the number of valid passwords, we first count the
number of eight character passwords without the digit con-
straint:(26+10)8 = 368. Now, we subtract the number of
passwords that fail to meet the digit constraint, namely the
passwords with one or no digit. There are268 passwords
without any digits. To count the passwords with exactly
one digit, we note that there are267 ways to choose an
ordered set of7 letters,10 ways to choose one digit, and8
places to put the digit in the list of letters. Therefore, there
are267 · 10 · 8 passwords with only one digit. Thus, there
are368 − 268 − 267 · 10 · 8 valid passwords.

Lists. A list is an ordered collection of elements which
are not necessarily different from each other. We note two
differences between lists and sets:

(1) a list is ordered, but a set is not;

(2) a list can have repeated elements, but a set can not.

Lists can be expressed in terms of another mathematical
concept in which we map elements of one set to elements
of another set. Afunctionf from adomainD to a range
R, denoted asf : D → R, associates exactly one element
in R to each elementx ∈ D. A list of k elements is a
function{1, 2, . . . , k} → R. For example, the function in
Figure 3 corresponds to the lista, b, c, b, z, 1, 3, 3. We can
use the Product Principle 2 to count the number of differ-
ent functions from a finite domain,D, to a finite range,R.

6

8

7

6

5

4

3

2

1 a

b

c

d

1

2

3

z

fD R

Figure 3: A function representing a list.

Specifically, we have a list of length|D| with |R| possi-
bilities for each position. Hence, the number of different
functions fromD to R is |R||D|.

Bijections. The functionf : D → R is injectiveor one-
to-oneif f(x) 6= f(y) for all x 6= y. It is surjectiveor
onto if for every r ∈ R, there exists somex ∈ D with
f(x) = r. The function isbijectiveor aone-to-one corre-
spondenceif it is both injective and surjective.

BIJECTION PRINCIPLE. Two setsD and R have the
same size if and only if there exists a bijectionf : D → R.

Thus, asking how many bijections there are fromD to R
only makes sense if they have the same size. Suppose this
size is finite, that is,|D| = |R| = n. Then being injective
is the same as being bijective. To count the number of
bijections, we assign elements ofR to elements ofD, in
sequence. We haven choices for the first element in the
domain,n − 1 choices for the second,n − 2 for the third,
and so on. Hence the number of different bijections from
D to R is n · (n − 1) · . . . · 1 = n!.

Summary. Today, we began with the building blocks of
counting: sets and lists. We went through some examples
using the sum and product principles: counting the num-
ber of times a loop is executed, the number of possible
passwords, and the number of combinations. Finally, we
talked about functions and bijections.

7

2 Binomial Coefficients

In this section, we focus on counting the number of ways
sets and lists can be chosen from a given set.

Permutations. A permutationis a bijection from a finite
setD to itself,f : D → D. For example, the permutations
of {1, 2, 3} are: 123, 132, 213, 231, 312, and321. Here
we list the permutations in lexicographic order, same as
they would appear in a dictionary. Assuming|D| = k,
there arek! permutations or, equivalently, orderings of the
set. To see this, we note that there arek choices for the
first element,k − 1 choices for the second,k − 2 for the
third, and so on. The total number of choices is therefore
k(k − 1) · . . . · 1, which is the definition ofk!.

Let N = {1, 2, . . . , n}. For k ≤ n, a k-element per-
mutation is an injection{1, 2, . . . , k} → N . In other
words, ak-element permutation is a list ofk distinct el-
ements fromN . For example, the3-element permutations
of {1, 2, 3, 4} are

123, 124, 132, 134, 142, 143,
213, 214, 231, 234, 241, 243,
312, 314, 321, 324, 341, 342,
412, 413, 421, 423, 431, 432.

There are24 permutations in this list. There are six or-
derings of the subset{1, 2, 3} in this list. In fact, each
3-element subset occurs six times. In general, we writenk

for the number ofk-element permutations of a set of size
n. We have

nk =

k−1
∏

i=0

(n − i)

= n(n − 1) · · · (n − (k − 1))

=
n!

(n − k)!
.

Subsets. The binomial coefficient
(

n
k

)

, pronouncedn
choosek, is by definition the number ofk-element sub-
sets of a sizen set. Since there arek! ways to order a set
of sizek, we know thatnk =

(

n
k

)

· k! which implies
(

n

k

)

=
n!

(n − k)!k!
.

We fill out the following tables with values of
(

n
k

)

, where
the row index is the values ofn and the column index is
the value ofk. Values of

(

n
k

)

for k > n are all zero and
are omitted from the table.

0 1 2 3 4 5
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1

By studying this table, we notice several patterns.

•
(

n
0

)

= 1. In words, there is exactly one way to choose
no item from a list ofn items.

•
(

n
n

)

= 1. In words, there is exactly one way to choose
all n items from a list ofn items.

• Each row is symmetric, that is,
(

n
k

)

=
(

n
n−k

)

.

This table is also known as Pascal’s Triangle. If we draw
it symmetric between left and right then we see that each
entry in the triangle is the sum of the two entries above it
in the previous row.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Pascal’s Relation. We express the above recipe of con-
structing an entry as the sum of two previous entries more
formally. For convenience, we define

(

n
k

)

= 0 whenever
k < 0, n < 0, or n < k.

PASCAL’ S RELATION.
(

n
k

)

=
(

n−1
k−1

)

+
(

n−1
k

)

.

PROOF. We give two arguments for this identity. The first
works by algebraic manipulations. We get

(

n

k

)

=
(n − k)(n − 1)! + k(n − 1)!

(n − k)!k!

=
(n − 1)!

(n − k − 1)!k!
+

(n − 1)!

(n − k)!(k − 1)!

=

(

n − 1

k

)

+

(

n − 1

k − 1

)

.

For the second argument, we partition the sets. Let|S| =
n and leta be an arbitrary but fixed element fromS.

(

n
k

)

counts the number ofk-element subsets ofS. To get the
number of subsets that containa, we count the(k − 1)-
element subsets ofS −{a}, and to get the number of sub-
sets that do not containa, we count thek-element subsets

8

of S − {a}. The former is
(

n−1
k−1

)

and the latter is
(

n−1
k

)

.
Since the subsets that containa are different from the sub-
sets that do not containa, we can use the Sum Principle
1 to get the number ofk-element subsets ofS equal to
(

n−1
k−1

)

+
(

n−1
k

)

, as required.

Binomials. We use binomial coefficients to find a for-
mula for(x + y)n. First, let us look at an example.

(x + y)2 = (x + y)(x + y)

= xx + yx + xy + yy

= x2 + 2xy + y2.

Notice that the coefficients in the last line are the same
as in the second line of Pascal’s Triangle. This is more
generally the case and known as the

BINOMIAL THEOREM. (x + y)n =
∑n

i=0

(

n
i

)

xn−iyi.

PROOF. If we write each term of the result before combin-
ing like terms, we list every possible way to select onex or
oney from each factor. Thus, the coefficient ofxn−iyi is
equal to

(

n
n−i

)

=
(

n
i

)

. In words, it is the number of ways
we can selectn− i factors to bex and have the remaining
i factors to bey. This is equivalent to selectingi factors to
bey and have the remaining factors bex.

Corollaries. The Binomial Theorem can be used to de-
rive a number of other interesting sums. We prove three
such consequences.

COROLLARY 1.
∑n

i=0

(

n
i

)

= 2n.

PROOF. Let x = y = 1. Then, by the Binomial Theorem
we have

(1 + 1)n =

n
∑

i=0

(

n

i

)

1n−i1i.

This implies the claimed identity.

COROLLARY 2.
∑n

j=k

(

j
k

)

=
(

n+1
k+1

)

.

PROOF. We use Pascal’s Relation to prove this identity. It
is instructive to trace our steps graphically, in the triangle
above. In a first step, we replace

(

n+1
k+1

)

by
(

n
k

)

and
(

n
k+1

)

.
Keeping the first term, we replace the second,

(

n
k+1

)

, by
(

n−1
k

)

and
(

n−1
k+1

)

. Repeating this operation, we finally re-

place
(

k+1
k+1

)

by
(

k
k

)

= 1 and
(

k
k+1

)

= 0. In other words,
(

n+1
k+1

)

is equal to the sum of the
(

j
k

)

for j running fromn
down tok.

COROLLARY 3.
∑n

i=1 i2 = n3

3 + n2

2 + n
6 .

PROOF. We first express the summands in terms of bino-
mial coefficients and then use Corollary 2 to get the result.

n
∑

i=1

i2 = 2

n
∑

i=1

i2 − i

2
+

n
∑

i=1

i

= 2

n
∑

i=1

(

i

2

)

+

n
∑

i=1

(

i

1

)

= 2

(

n + 1

3

)

+

(

n + 1

2

)

=
2(n + 1)n(n − 1)

1 · 2 · 3 +
(n + 1)n

1 · 2
=

n3 − n

3
+

n2 + n

2
.

This implies the claimed identity.

Summary. The binomial coefficient,
(

n
k

)

, counts the dif-
ferent ways we can choosek elements from a set ofn. We
saw how it can be used to compute(x + y)n. We proved
several corollaries and saw that describing the identities
as counting problems can lead us to different, sometimes
simpler proofs.

9

3 Equivalence Relations

Equivalence relations are a way to partition a set into sub-
sets of equivalent elements. Being equivalent is then in-
terpreted as being the same, such as different views of the
same object or different ordering of the same elements,
etc. By counting the equivalence classes, we are able to
count the items in the set that are different in an essential
way.

Labeling. To begin, we ask how many ways are there
to label three of five elements red and the remaining two
elements blue? Without loss of generality, we can call
our elementsA, B, C, D, E. A labeling is an function that
associates a color to each element. Suppose we look at
a permutation of the five elements and agree to color the
first three red and the last two blue. Then the permutation
ABDCE would correspond to coloringA, B, D red and
C, E blue. However, we get the same labeling with other
permutations, namely

ABD; CE BAD; CE DAB; CE
ABD; EC BAD; EC DAB; EC
ADB; CE BDA; CE DBA; CE
ADB; EC BDA; EC DBA; EC .

Indeed, we have3!2! = 12 permutations that give the
same labeling, simply because there are3! ways to or-
der the red elements and2! ways to order the blue ele-
ments. Similarly, every other labeling corresponds to12
permutations. In total, we have5! = 120 permutations
of five elements. The set of120 permutations can thus be
partitioned into120

12 = 10 blocks such that any two per-
mutations in the same block give the same labeling. Any
two permutations from different blocks give different la-
belings, which implies that the number of different label-
ings is10. More generally, the number of ways we can
label k of n elements red and the remainingn − k ele-
ments blue is n!

k!(n−k)! =
(

n
k

)

. This is also the number of
k-element subsets of a set ofn elements.

Now suppose we have three labels, red, green, and blue.
We count the number of different labelings by dividing
the total number of orderings by the orderings within in
the color classes. There aren! permutations of then el-
ements. We wanti elements red,j elements blue, and
k = n − i − j elements green. We agree that a permuta-
tion corresponding to the labeling we get by coloring the
first i elements red, the nextj elements blue, and the lastk
elements green. The number of repeated labelings is thus
i! timesj! timesk! and we have n!

i!j!k! different labelings.

Equivalence relations. We now formalize the above
method of counting. Arelation on a setS is a collec-
tion R of ordered pairs,(x, y). We writex ∼ y if the pair
(x, y) is in R. We say that a relation is

• reflexiveif x ∼ x for all x ∈ S;

• symmetricif x ∼ y impliesy ∼ x;

• transitiveif x ∼ y andy ∼ z imply x ∼ z.

We say that the relation is anequivalence relationif R is
reflexive, symmetric, and transitive. IfS is a set andR an
equivalence relation onS, then theequivalence classof an
elementx ∈ S is

[x] = {y ∈ S | y ∼ x}.

We note here that ifx ∼ y then [x] = [y]. In the above
labeling example,S is the set of permutations of the ele-
mentsA, B, C, D, E and two permutations are equivalent
if they give the same labeling. Recalling that we color the
first three elements red and the last two blue, the equiva-
lence classes are[ABC; DE], [ABD; CE], [ABE; CD],
[ACD; BE], [ACE; BD], [ADE; BC], [BCD; AE],
[BCE; AD], [BDE; AC], [CDE; AB].

Not all relations are equivalence relations. Indeed, there
are relations that have none of the above three properties.
There are also relations that satisfy any subset of the three
properties but none of the rest.

An example: modular arithmetic. We say an integera
is congruentto another integerb modulo a positive integer
n, denoted asa = b mod n, if b− a is an integer multiple
of n. To illustrate this definition, letn = 3 and letS be the
set of integers from0 to 11. Thenx = y mod 3 if x and
y both belong toS0 = {0, 3, 6, 9} or both belong toS1 =
{1, 4, 7, 10} or both belong toS2 = {2, 5, 8, 11}. This
can be easily verified by testing each pair. Congruence
modulo3 is in fact an equivalence relation onS. To see
this, we show that congruence modulo3 satisfies the three
required properties.

reflexive.Sincex−x = 0 ·3, we know thatx = x mod 3.

symmetric.If x = y mod 3 thenx andy belong to the
same subsetSi. Hence,y = x mod 3.

transitive. Let x = y mod 3 andy = z mod 3. Hencex
andy belong to the same subsetSi and so doy and
z. It follows thatx andz belong to the same subset.

More generally, congruence modulon is an equivalence
relation on the integers.

10

Block decomposition. An equivalence class of elements
is sometimes called ablock. The importance of equiva-
lence relations is based on the fact that the blocks partition
the set.

THEOREM. Let R be an equivalence relation on some
setS. Then the blocksSx = {y ∈ S | x ∼ y, y ∈ S} for
all x ∈ S partitionS.

PROOF. In order to prove that
⋃

x Sx = S, we need to
show two things, namely

⋃

x∈S Sx ⊆ S and
⋃

x∈S Sx ⊇
S. EachSx is a subset ofS which implies the first inclu-
sion. Furthermore, eachx ∈ S belongs toSx which im-
plies the second inclusion. Additionally, ifSx 6= Sy, then
Sx ∩ Sy = ∅ sincez ∈ Sx impliesz ∼ x, which means
thatSx = Sz , which means thatSz 6= Sy. Therefore,z is
not related toy, and soz 6∈ Sy.

Symmetrically, a partition ofS defines an equivalence
relation. If the blocks are all of the same size then it is
easy to count them.

QUOTIENT PRINCIPLE. If a setS of sizep can be parti-
tioned intoq classes of sizer each, thenp = qr or, equiv-
alently,q = p

r .

Multisets. The difference between a set and amultiset
is that the latter may contain the same element multiple
times. In other words, a multiset is an unordered collec-
tion of elements, possibly with repetitions. We can list the
repetitions,

〈〈c, o, l, o, r〉〉
or we can specify the multiplicities,

m(c) = 1, m(o) = 2, m(r) = 1.

Thesizeof a multiset is the sum of the multiplicities. We
show how to count multisets by considering an example,
the ways to distributek (identical) books amongn (differ-
ent) shelves. The number of ways is equal to

• the number of size-k multisets of then shelves;

• the number of ways to writek as a sum ofn non-
negative integers.

We count the ways to writek as a sum ofn non-negative
integers as follows. Choose the first integer of the sum
to bep. Now we have reduced the problem to counting
the ways to writek − p as the sum ofn − 1 non-negative
integers. For small values ofn, we can do this.

For example, letn = 3. Then, we havep + q + r = k.
The choices forp are from0 to k. Oncep is chosen, the
choices forq are fewer, namely from0 to k − p. Finally,
if p andq are chosen thenr is determined, namelyr =
k − p − q. The number of ways to writek as a sum of
three non-negative integers is therefore

k
∑

p=0

k−i
∑

q=0

1 =
k
∑

p=0

(k − p + 1)

=

k+1
∑

p=1

p

=

(

k + 2

2

)

.

There is another (simpler) way of finding this solution.
Suppose we line up ourn books, then placek− 1 dividers
between them. The number of books between thei-th and
the(i − 1)-st dividers is equal to the number of books on
the i-th shelf; see Figure 4. We thus haven + k − 1 ob-
jects,k books plusn− 1 dividers. The number of ways to

Figure 4: The above arrangement of books and blocks represents
two books placed on the first and last shelves, and one book on
the second shelf. As a sum, this figure represents2 + 1 + 0 + 2.

choosen− 1 dividers fromn + k − 1 objects is
(

n+k−1
n−1

)

.
We can easily see that this formula agrees with the result
we found forn = 3.

Summary. We defined relations and equivalence rela-
tions, investigating several examples of both. In partic-
ular, modular arithmetic creates equivalence classes of the
integers. Finally, we looked at multisets, and saw that
counting the number of size-k multisets ofn elements is
equal to the number of ways to writek as a sum ofn non-
negative integers.

11

First Homework Assignment

Write the solution to each question on a single page. The
deadline for handing in solutions is January 26.

Question 1. (20 = 10 + 10 points). Ifn basketball teams
play each other team exactly once, how many games
will be played in total? If the teams then compete
in a single elimination tournament (similar to March
Madness), how many additional games are played?

Question 2. (20 = 10 + 10 points).

(a) (Problem 1.2-7 in our textbook). Let|D| =
|R| = n. Show that the following statement
is true: The functionf : D → R is surjective if
and only iff is injective.

(b) Is the functionf : R → R defined byf(x) =
3x + 2 a bijection? Prove or give a counterex-
ample.

Question 3. (20 = 6 + 7 + 7 points).

(a) What is the coefficient of thex8 term of (x −
2)30?

(b) What is the coefficient of thexiyjzk term of
(x + y + z)n?

(c) Show that
(

n
k

)

=
(

n
n−k

)

.

Question 4. (20 = 6+7+7 points). For (a) and (b), prove
or disprove that the relations given are equivalence
relations. For (c), be sure to justify your answer.

(a) Choose somek ∈ Z. Let x, y ∈ Z. We say
x ∼ y if x ≡ y mod k.

(b) Let x, y be positive integers. We sayx ∼ y if
the greatest common factor ofx andy is greater
than1.

(c) How many ways can you distributek identical
cookies ton children?

12

II N UMBER THEORY

We use the need to send secret messages as the motivation to study questions in number theory. The main tool for this
purpose is modular integer arithmetic.

4 Modular Arithmetic
5 Inverses
6 Euclid’s Algorithm
7 RSA Cryptosystem

Homework Assignments

13

4 Modular Arithmetic

We begin the chapter on number theory by introducing
modular integer arithmetic. One of its uses is in the en-
cryption of secret messages. In this section, all numbers
are integers.

Private key cryptography. The problem of sending se-
cret messages is perhaps as old as humanity or older. We
have asenderwho attempts to encrypt a message in such a
way that the intendedreceiveris able to decipher it but any
possibleadversaryis not. Following the traditional proto-
col, the sender and receiver agree on a secret code ahead
of time, and they use it to both encrypt and decipher the
message. The weakness of the method is the secret code,
which may be stolen or cracked.

As an example, considerCeasar’s cipher, which con-
sists of shifting the alphabet by some fixed number of po-
sitions, e.g.,

A B C . . . V W X Y Z
↓ ↓ ↓ . . . ↓ ↓ ↓ ↓ ↓
E F G . . . Z A B C D.

If we encode the letters as integers, this is the same as
adding a fixed integer but then subtracting26, the number
of letters, if the sum exceeds this number. We consider
this kind of integer arithmetic more generally.

Public key cryptography. Today, we use more power-
ful encryption methods that give a more flexible way to
transmit secret information. We call thispublic key cryp-
tographywhich roughly works as follows. As before, we
have a sender, called Alice, and a receiver, called Bob.
Both Alice and Bob have apublic key, KPA andKPB,
which they publish for everyone to see, and asecret key,
KSA andKSB, which is only known to themselves. They
do not exchange the secret key even among each other.
The keys are used to change messages so we can think of
them as functions. The function that corresponds to the
public and the secret keys are inverses of each other, that
is,

SA(PA(x)) = PA(SA(x)) = x;

SB(PB(x)) = PB(SB(x)) = x.

The crucial point is thatPA is easy to compute for every-
body andSA is easy to compute for Alice but difficult for
everybody else, including Bob. Symmetrically,PB is easy
for everybody butSB is easy only for Bob. Perhaps this

sound contradictory since everybody knowsPA andSA is
just its inverse, but it turns out that there are pairs of func-
tions that satisfy this requirement. Now, if Alice wants to
send a message to Bob, she proceeds as follows:

1. Alice gets Bob’s public key,PB .

2. Alice applies it to encrypt her message,y = PB(x).

3. Alice sendsy to Bob, publically.

4. Bob appliesSB(y) = SB(PB(x)) = x.

We note that Alice does not need to know Bob’s secret
key to encrypt her message and she does not need secret
channels to transmit her encrypted message.

Arithmetic modulo n. We begin by defining what it
means to take one integer,m, modulo another integer,n.

DEFINITION. Letting n ≤ 1, m mod n is the smallest
integerr ≥ 0 such thatm = nq + r for some integerq.

Given m andn ≥ 1, it is not difficult to see thatq and
r exist. Indeed,n partitions the integers into intervals of
lengthn:

. . . ,−n, . . . , 0, . . . , n, . . . , 2n, . . .

The numberm lies in exactly one of these intervals. More
precisely, there is an integerq such thatqn ≤ m < ((q +
1)n. The integerr is the amount by whichm exceedsqn,
that is,r = m−qn. We see thatq andr are unique, which
is known as

EUCLID ’ S DIVISION THEOREM. Letting n ≥ 1, for
everym there are unique integersq and0 ≤ r < n such
thatm = nq + r.

Computations. It is useful to know that modulos can
be taken anywhere in the calculation if it involves only
addition and multiplication. We state this more formally.

LEMMA 1. Lettingn ≥ 1, i mod n = (i+ kn) mod n.

This should be obvious because addingk timesn moves
the integeri to the right byk intervals but maintains its
relative position within the interval.

LEMMA 2. Lettingn ≥ 1, we have

(i + j) mod n = (i mod n) + (j mod n) mod n;

(i · j) mod n = (i mod n) · (j mod n) mod n.

14

PROOF. By Euclid’s Division Theorem, there are unique
integersqi, qj and0 ≤ ri, rj < n such that

i = qin + ri;

j = qjn + rj .

Plugging this into the left hand side of the first equation,
we get

(i + j) mod n = (qi + qj)n + (ri + rj) mod n

= (ri + rj) mod n

= (i mod n) + (j mod n) mod n.

Similarly, it is easy to show that(ij) mod n =
(rirj) mod n, which implies the second equation.

Algebraic structures. Before we continue, we intro-
duce some notation. LetZn = {0, 1, . . . , n−1} and write
+n for addition modulon. More formally, we have an
operation that maps two numbers,i ∈ Zn andj ∈ Zn, to
their sum,i+n j = (i+j) mod n. This operation satisfies
the following four properties:

• it is associative, that is,(i+n j)+n k = i+n (j+n k)
for all i, j, k ∈ Zn;

• 0 ∈ Zn is theneutral element, that is,0 +n i = i for
all i ∈ Zn;

• everyi ∈ Zn has aninverse elementi′, that is,i +n

i′ = 0;

• it is commutative, that is, i +n j = j +n i for all
i, j ∈ Zn.

The first three are the defining property of agroup, and if
the fourth property is also satisfied we have acommutative
or Abelian group. Thus,(Zn, +n) is an Abelian group.
We have another operation mappingi andj to their prod-
uct, i ·n j = (ij) mod n. This operation has a similar list
of properties:

• it is associative, that is,(i ·n j) ·n k = i ·n (j ·n k) for
all i, j, k ∈ Zn;

• 1 ∈ Zn is theneutral element, that is,1 ·n i = i for
all i ∈ Zn;

• it is commutative, that is,i ·n j = j ·n i for all i, j ∈
Zn.

Under some circumstances, we also have inverse elements
but not in general. Hence,(Zn, ·n) is generally not a
group. Considering the interaction of the two operations,
we note that

• multiplication distributesover addition, that is,i ·n
(j +n k) = (i ·n j) +n (i ·n k) for all i, j, k ∈ Zn.

These are the eight defining properties of acommutative
ring. Had we also a multiplicative inverse for every non-
zero element then the structure would be called afield.
Hence,(Zn, +n, ·n) is a commutative ring. We will see in
the next section that it is a field ifn is a prime number.

Addition and multiplication modulo n. We may be
tempted to use modular arithmetic for the purpose of trans-
mitting secret messages. As a first step, the message is in-
terpreted as an integer, possibly a very long integer. For
example, we may write each letter in ASCII and read the
bit pattern as a number. Then we concatenate the numbers.
Now suppose Alice and Bob agree on two integers,n ≥ 1
anda, and they exchange messages using

P (x) = x +n a;

S(y) = y +n (−a) = y −n a.

This works fine but not as a public key cryptography sys-
tem. Knowing thatP is the same as addinga modulon,
it is easy to determine its inverse,S. Alternatively, let us
use multiplication instead of addition,

P (x) = x ·n a;

S(y) = y ·n (−a) = y :n a.

The trouble now is that division modulon is not as
straightforward an operation as for integers. Indeed, if
n = 12 anda = 4, we have0 · 4 = 3 · 4 = 6 · 4 =
9 · 4 = 0 mod n. Since multiplication with4 is not in-
jective, the inverse operation is not well defined. Indeed,
0 :n 4 could be0, 3, 6, or 9.

Summary. We learned about private and public key
cryptography, ways to to send a secret message from a
sender to a receiver. We also made first steps into number
theory, introducing modulo arithmetic and Euclid’s Divi-
sion Theorem. We have seem that addition and multiplica-
tion modulon are both commutative and associative, and
that multiplication distributes over addition, same as in or-
dinary integer arithmetic.

15

5 Inverses

In this section, we study under which conditions there is a
multiplicative inverse in modular arithmetic. Specifically,
we consider the following four statements.

I. The integera has a multiplicative inverse inZn.

II. The linear equationa ·n x = b has a solution inZn.

III. The linear equationax+ny = 1 has a solution in the
integers.

IV. The integersa andn are relative prime.

We will see that all four statements are equivalent, and
we will prove all necessary implications to establish this,
except for one, which we will prove in the next section.

Examples. Before starting the proofs, we compute mul-
tiplicative inverses for a few values ofn anda; see Table
1. Except fora = 0, all values ofa have multiplicative in-

n = 2 a 0 1
a
′ 1

n = 3 a 0 1 2
a
′ 1 2

n = 4 a 0 1 2 3
a
′ 1 3

n = 5 a 0 1 2 3 4
a
′ 1 2 3 4

n = 6 a 0 1 2 3 4 5
a
′ 1 5

n = 7 a 0 1 2 3 4 5 6
a
′ 1 4 5 2 3 6

n = 8 a 0 1 2 3 4 5 6 7
a
′ 1 3 5 7

n = 9 a 0 1 2 3 4 5 6 7 8
a
′ 1 5 7 2 4 8

Table 1: Values ofn for which a has a multiplicative inversea′.
Black entries indicate the inverse does not exist.

verses ifn = 2, 3, 5, 7 but not ifn = 4, 6, 8, 9. In the latter
case, we have multiplicative inverses for some values ofa
but not for all. We will later find out that the characterizing
condition for the existence of the multiplicative inverse is
thatn anda have no non-trivial common divisor.

Linear equations modulon. Here we prove I⇐⇒ II.
Themultiplicative inverseof an integera ∈ Zn is another
integera′ ∈ Zn such thata′ ·n a = a ·n a′ = 1. We
note that the multiplicative inverse is unique, if it exists.
Indeed, ifa′′ ·n a = 1 then we can multiply witha′ from

the right and geta′ ·n(a·na′) = a′′ ·n(a·na′) and therefore
a′ = a′′. If a has a multiplicative inverse, we can use it to
solve a linear equation. Multiplying with the inverse from
the left and using associativity, we get

a ·n x = b;

(a′ ·n a) ·n x = a′ ·n b;

x = a′ ·n b.

Since the multiplicative inverse is unique, so is the solu-
tion x = a′ ·n b to the linear equation. We thus proved a
little bit more than I=⇒ II, namely also the uniqueness
of the solution.

A. If a has a multiplicative inversea′ in Zn then for
every b ∈ Zn, the equationa ·n x = b has the unique
solutionx = a′ ·n b.

Every implication has an equivalent contrapositive form.
For a statement I=⇒ II this form is¬II =⇒ ¬I. We state
the contrapositive form in this particular instance.

A’. If a ·n x = b has no solution inZn thena does not
have a multiplicative inverse.

To prove A’ we just need to assume that it is false, that is,
that¬II and I both hold. But if we have I then we also have
II. Now we have¬II as well as II. But this is a contradic-
tion with they cannot both be true. What we have seen
here is a very simple version of a proof by contradiction.
More complicated versions will follow later.

By setting b = 1, we getx = a′ as a solution to
a ·n x = 1. In other words,a′ ·n a = a ·n a′ = 1. Hence,
II =⇒ I. This particuar implication is called the converse
of I =⇒ II, which should not be confused with the contra-
positive. The converse is a new, different statement, while
the contrapositive is logically eqivalent to the original im-
plication, no matter what the specifics of the implication
are.

Linear equations in two variables. Here we prove
II ⇐⇒ III. Recall that a ·n x = 1 is equivalent to
ax mod n = 1. Writing ax = qn+ r with 0 ≤ r < n, we
see thatax mod n = 1 is equivalent to the existence of an
integerq such thatax = qn + 1. Writing y = −q we get

ax + ny = 1.

All steps in the above derivation are reversible. Hence, we
proved that II is equivalent to III. We state the specific
result.

16

B. The equationa ·n x = b has a solution inZn iff there
exist integersx andy such thatax + ny = 1.

Implications are transitive, that is, if I implies II and II
implies III then I implies III. We can do the same chain
of implications in the other direction as well. Hence, if
I ⇐⇒ II and II ⇐⇒ III, as we have established above, we
also have I⇐⇒ III. We again state this specific result for
clarity.

C. The integera has a multiplicative inverse inZn iff
there exist integersx andy such thatax + ny = 1.

Greatest common divisors. Here we prove III=⇒ IV.
We will prove IV =⇒ III later. We say an integeri factors
another integerj if j/i is an integer. Furthermore,j is
a prime numberif its only factors are±j and±1. The
greatest common divisorof two integersj andk, denoted
asgcd(j, k), is the largest integerd that is a factor of both.
We sayj andk andrelative primeif gcd(j, k) = 1.

D. Given integersa andn, if there exist integersx and
y such thatax + ny = 1 thengcd(a, n) = 1.

PROOF. Supposegcd(a, n) = k. Then we can writea =
ik andn = jk. Substituting these into the linear equation
gives

1 = ax + ny

= k(ix + jy).

But thenk is a factor of1 and thereforek = ±1. This
implies that the only common factors ofa andn are±1
and thereforegcd(a, n) = 1.

Summary. We have proved relationships between the
statements I, II, III, IV; see Figure 5. We will see later that

III

II

I

IV
D

C

A

B

Figure 5: Equivalences between statements.

the implication proved by D can also be reversed. Thus
computing the greatest common divisor gives a test for the
existence of a multiplicative inverse.

17

6 Euclid’s Algorithm

In this section, we present Euclid’s algorithm for the great-
est common divisor of two integers. An extended version
of this algorithm will furnish the one implication that is
missing in Figure 5.

Reduction. An important insight is Euclid’s Division
Theorem stated in Section 4. We use it to prove a relation-
ship between the greatest common divisors of numbersj
andk when we replacek by its remainder moduloj.

LEMMA . Let j, k, q, r > 0 with k = jq + r. Then
gcd(j, k) = gcd(r, j).

PROOF. We begin by showing that every common factor
of j andk is also a factor ofr. Lettingd = gcd(j, k) and
writing j = Jd andk = Kd, we get

r = k − jq = (K − Jq)d.

We see thatr can be written as a multiple ofd, so d is
indeed a factor ofr. Next, we show that every common
factor ofr andj is also a factor ofk. Lettingd = gcd(r, j)
and writingr = Rd andj = Jd, we get

k = jq + r = (Jq + R)d.

Hence,d is indeed a factor ofk. But this implies thatd is
a common factor ofj andk iff it is a common factor ofr
andj.

Euclid’s gcd algorithm. We use the Lemma to compute
the greatest common divisor of positive integersj andk.
The algorithm is recursive and reduces the integers until
the remainder vanishes. It is convenient to assume that
both integers,j andk, are positive and thatj ≤ k.

integer GCD(j, k)
q = k div j; r = k − jq;
if r = 0 then return j

else return GCD(r, j)
endif.

If we call the algorithm forj > k then the first recursive
call is for k andj, that is, it reverses the order of the two
integers and keeps them ordered as assumed from then on.
Note also thatr < j. In words, the first parameter,j,
shrinks in each iterations. There are only a finite num-
ber of non-negative integers smaller thanj which implies

that after a finite number of iterations the algorithm halts
with r = 0. In other words, the algorithm terminates after
a finite number of steps, which is something one should
always check, in particular for recursive algorithms.

Last implication. We modify the algorithm so it also
returns the integersx andy for whichgcd(j, k) = jx+ky.
This provides the missing implication in Figure 5.

D’. If gcd(a, n) = 1 then the linear equationax+ny =
1 has a solution.

This finally verifies that the gcd is a test for the existence
of a multiplicative inverse in modular arithmetic. More
specifically,x mod n is the multiplicative inverse ofa in
Zn. Do you see why? We can thus update the relationship
between the statements I, II, III, IV listed at the beginning
of Section 5; see Figure 6.

III

II

I

IV

C

A

B

D, D’

Figure 6: Equivalences between the statements listed at thebe-
ginning of Section 5.

Extended gcd algorithm. If r = 0 then the above algo-
rithm returnsj as the gcd. In the extended algorithm, we
also returnx = 1 andy = 0. Now supposer > 0. In this
case, we recurse and get

gcd(r, j) = rx′ + jy′

= (k − jq)x′ + jy′

= j(y′ − qx′) + kx′.

We thus returng = gcd(r, j) as well asx = y′ − qx′ and
y = x′. As before, we assume0 < j ≤ k when we call
the algorithm.

integer3 XGCD(j, k)
q = k div j; r = k − jq;
if r = 0 then return (j, 1, 0)

else (g, x′, y′) = XGCD(r, j);
return (g, y′ − qx′, x′)

endif.

18

To illustrate the algorithm, we run it forj = 14 and
k = 24. The values ofj, k, q, r, g = gcd(j, k), x, y at
the various levels of recursion are given in Table 2.

j k q r g x y
14 24 1 10 2 -5 3
10 14 1 4 2 3 -2
4 10 2 2 2 -2 1
2 4 2 0 2 1 0

Table 2: Running the extended gcd algorithm onj = 14 and
k = 24.

Computing inverses. We have established that the inte-
gera has a multiplicative inverse inZn iff gcd(a, n) = 1.
Assumingn = p is a prime number, this is the case when-
evera < p is positive.

COROLLARY. If p is prime then every non-zeroa ∈ Zp

has a multiplicative inverse.

It is straightforward to compute the multiplicative inverse
using the extended gcd algorithm. As before, we assume
p is a prime number and0 < a < p.

integer INVERSE(a, p)
(g, x, y) = XGCD(a, p);
assert g = 1; return x mod p.

The assert statement makes sure thata andp are indeed
relative prime, for else the multiplicative inverse would
not exist. We have seen thatx can be negative so it is
necessary to takex modulop before we report it as the
multiplicative inverse.

Multiple moduli. Sometimes, we deal with large inte-
gers, larger then the ones that fit into a single computer
word (usually32 or 64 bits). In this situation, we have to
find a representation that spreads the integer over several
words. For example, we may represent an integerx by its
remainders modulo3 and modulo5, as shown in Table 3.
We see that the first15 non-negative integers correspond

x 0 1 2 3 4 . . . 13 14 15

x mod 3 0 1 2 0 1 . . . 1 2 0
x mod 5 0 1 2 3 4 . . . 3 4 0

Table 3: Mapping the integers from0 to15 to pairs of remainders
after dividing with3 and with5.

to different pairs of remainders. The generalization of this
insight to relative prime numbersm andn is known as the

CHINESE REMAINDER THEOREM. Let m, n > 0 be
relative prime. Then for everya ∈ Zm andb ∈ Zn, the
system of two linear equations

x mod m = a;

x mod n = b

has a unique solution inZmn.

There is a further generalization to more then two moduli
that are pairwise relative prime. The proof of this theorem
works as suggested by the example, namely by showing
thatf : Zmn → Zm × Zn defined by

f(x) = (x mod m, x mod n)

is injective. Since bothZmn andZm × Zn have sizemn,
this implies thatf is a bijection. Hence,(a, b) ∈ Zm×Zn

has a unique preimage, the solution of the two equations.

To use this result, we would take two large integers,x
andy, and represent them as pairs,(x mod m, x mod n)
and (x mod m, x mod n). Arithmetic operations can
then be done on the remainders. For example,x times
y would be represented by the pair

xy mod m = [(x mod m)(y mod m)] mod m;

xy mod n = [(x mod n)(y mod n)] mod n.

We would choosem andn small enough so that multi-
plying two remainders can be done using conventional,
single-word integer multiplication.

Summary. We discussed Euclid’s algorithm for com-
puting the greatest common divisor of two integers, and its
extended version which provides the missing implication
in Figure 5. We have also learned the Chinese Remainder
Theorem which can be used to decompose large integers
into digestible junks.

19

7 RSA Cryptosystem

Addition and multiplication modulon do not offer the
computational difficulties needed to build a viable cryp-
tographic system. We will see that exponentiation modulo
n does.

Operations as functions. Recall that+n and ·n each
read two integers and return a third integer. If we fix one of
the two input integers, we get two functions. Specifically,
fixing a ∈ Zn, we have functionsA : Zn → Zn and
M : Zn → Zn defined by

A(x) = x +n a;

M(x) = x ·n a;

see Table 4. Clearly,A is injective for every choice of

x 0 1 2 3 4 5
A(x) 2 3 4 5 0 1
M(x) 0 2 4 0 2 4

Table 4: The functionA defined by addinga = 2 modulon = 6
is injective. In contrast, the functionM defined by multiplying
with a = 2 is not injective.

n > 0 anda ∈ Zn. On the other hand,M is injective
iff gcd(a, n) = 1. In particular,M is injective for every
non-zeroa ∈ Zn if n is prime.

Exponentiation. Yet another function we may consider
is takinga to thex-th power. LetE : Zn → Zn be defined
by

E(x) = ax mod n

= a ·n a ·n . . . ·n a,

where we multiplyx copies ofa together. We see in Table
5 that for some values ofa andn, the restriction ofE to
the non-zero integers is injective and for others it is not.
Perhaps surprisingly, the last column of Table 5 consists
of 1s only.

FERMAT’ S L ITTLE THEOREM. Let p be prime. Then
ap−1 mod p = 1 for every non-zeroa ∈ Zp.

PROOF. Sincep is prime, multiplication witha gives an
injective function for every non-zeroa ∈ Zp. In other
words, multiplying witha permutes the non-zero integers

ax 0 1 2 3 4 5 6
1 1 1 1 1 1 1 1
2 1 2 4 1 2 4 1
3 1 3 2 6 4 5 1
4 1 4 2 1 4 2 1
5 1 5 4 6 2 3 1
6 1 6 1 6 1 6 1

Table 5: Exponentiation modulon = 7. We writex from left to
right anda from top to bottom.

in Zp. Hence,

X = 1 ·p 2 ·p . . . ·p (p − 1)

= (1 ·p a) ·p (2 ·p a) ·p . . . ·p ((p − 1) ·p a)

= X ·p (ap−1 mod p).

Multiplying with the inverse ofX givesap−1 mod p = 1.

One-way functions. The RSA cryptosystem is based on
the existence ofone-way functionsf : Zn → Zn defined
by the following three properties:

• f is easy to compute;

• its inverse,f−1 : Zn → Zn, exists;

• without extra information,f−1 is hard to compute.

The notions of ‘easy’ and ‘hard’ computation have to be
made precise, but this is beyond the scope of this course.
Roughly, it means that givenx, computingy = f(x) takes
on the order of a few seconds while computingf−1(y)
takes on the order of years. RSA uses the following recipe
to construct one-way functions:

1. choose large primesp andq, and letn = pq;

2. choosee 6= 1 relative prime to(p− 1)(q − 1) and let
d be its multiplicative inverse modulo(p−1)(q−1);

3. the one-way function is defined byf(x) = xe mod n
and its inverse is defined byg(y) = yd mod n.

According to the RSA protocol, Bob publishese andn and
keepsd private. To exchange a secret message,x ∈ Zn,

4. Alice computesy = f(x) and publishesy;

5. Bob readsy and computesz = g(y).

To show that RSA is secure, we would need to prove
that without knowingp, q, d, it is hard to computeg. We

20

leave this to future generations of computer scientists. In-
deed, nobody today can prove that computingp andq from
n = pq is hard, but then nobody knows how to factor large
integers efficiently either.

Correctness. To show that RSA works, we need to
prove thatz = x. In other words,g(y) = f−1(y) for every
y ∈ Zn. Recall thaty is computed asf(x) = xe mod n.
We needyd mod n = x but we first prove a weaker result.

LEMMA . yd mod p = x mod p for everyx ∈ Zn.

PROOF. Sinced is the multiplicative inverse ofe modulo
(p − 1)(q − 1), we can writeed = (p − 1)(q − 1)k + 1.
Hence,

yd mod p = xed mod p

= xk(p−1)(q−1)+1 mod p.

Suppose first thatxk(q−1) mod p 6= 0. Then Fermat’s
Little Theorem impliesxk(p−1)(q−1) mod p = 1. But
this implies yd mod p = x mod p, as claimed. Sup-
pose second thatxk(q−1) mod p = 0. Sincep is prime,
every power of a non-zero integer is non-zero. Hence,
x mod p = 0. But this impliesyd mod p = 0 and thus
yd mod p = x mod p, as before.

By symmetry, we also haveyd mod q = x mod q.
Hence,

(yd − x) mod p = 0;

(yd − x) mod q = 0.

By the Chinese Remainder Theorem, this system of two
linear equations has a unique solution inZn, wheren =
pq. Sinceyd − x = 0 is a solution, there can be no other.
Hence,

(yd − x) mod n = 0.

The left hand side can be written as((yd mod n) −
x) mod n. This finally impliesyd mod n = x, as desired.

Summary. We talked about exponentiation modulon
and proved Fermat’s Little Theorem. We then described
how RSA uses exponentiation to construct one-way func-
tions, and we proved it correct. A proof that RSA is secure
would be nice but is beyond what is currently known.

21

Second Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is February 6.

Question 1. (20 = 10 + 10 points). (Problem 2.1-12 in
our textbook). We recall that a prime number,p, that
divides a product of integers divides one of the two
factors.

(a) Let1 ≤ a ≤ p − 1. Use the above recollection
to show that asb runs through the integers from
0 to p − 1, the productsa ·p b are all different.

(b) Explain why every positive integer less thanp
has a unique multiplicative inverse inZp.

Question 2. (20 points). (Problem 2.2-19 in our text-
book). Theleast common multipleof two positive
integersi andj, denoted aslcm(i, j), is the smallest
positive integerm such thatm/i andm/j are both
integer. Give a formula forlcm(i, j) that involves
gcd(i, j).

Question 3. (20 = 10 + 10 points). (Problem 2.2-17 in
our textbook). Recall the Fibonacci numbers defined
by F0 = 0, F1 = 1, andFi = Fi−1 + Fi−2 for all
i ≥ 2.

(a) Run the extended gcd algorithm forj = F10

andk = F11, showing the values of all param-
eters at all levels of the recursion.

(b) Running the extended gcd algorithm forj = Fi

andk = Fi+1, how many recursive calls does it
take to get the result?

Question 4. (20 points). Let n ≥ 1 be a nonprime
andx ∈ Zn such thatgcd(x, n) 6= 1. Prove that
xn−1 mod n 6= 1.

22

III L OGIC

It is now a good time to be more specific about the precise meaning of mathematical statements. They are governed by
the rules of logic.

8 Boolean Algebra
9 Quantifiers

10 Inference
Homework Assignments

23

8 Boolean Algebra

Logic is generally considered to lie in the intersection be-
tween Philosophy and Mathematics. It studies the mean-
ing of statements and the relationship between them.

Logical statements in computer programs. Program-
ming languages provide all the tools to be excessively pre-
cise. This includeslogical statementswhich are used to
construct loops, among other things. As an example, con-
sider a while loop that exchanges adjacent array elements
until some condition expressed by a logical statement is
satisfied. Putting the while loop inside a for loop we get a
piece of code that sorts an arrayA[1..n]:

for i = 1 to n do j = i;
while j > 1 and A[j] > A[j − 1] do

a = A[j]; A[j] = A[j − 1]; A[j − 1] = a;
j = j − 1

endwhile
endfor.

This particular method for sorting is often referred to as
insertion sort because afteri − 1 iterations,A[1..i − 1] is
sorted, and thei-th iteration inserts thei-th element such
thatA[1..i] is sorted. We illustrate the algorithm in Figure
7. Here we focus on the logic that controls the while loop.

4 5

4 5 1

4 1 5

5 4 1 7 3

x

x

x

1 4 5 7 3

1 4 5 3 7

1 4 3 5 7

3 4 5 71
x

x

x

1 4 5 7

1 4 5

Figure 7: The insertion sort algorithm applied to an unsorted
sequence of five integers.

The iteration is executed as long as two conditions hold,
namely “j > 1” and “A[j] > A[j − 1]”. The first pre-
vents we step beyond the left end of the array. The second
condition limits the exchanges to cases in which adjacent
elements are not yet in non-decreasing order. The two con-
ditions are connected by a logical and, which requires both
to be true.

Boolean operations. A logical statement is either true
(T) of false (F). We call this thetruth valueof the state-
ment. We will frequently represent the statement by a
variablewhich can be either true or false. Aboolean oper-
ation takes one or more truth values as input and produces
a new output truth value. It thus functions very much like
an arithmetic operation. For example,negationis a unary
operation. It maps a truth value to the opposite; see Ta-
ble 6. Much more common are binary operations; such as

p ¬p

T F

F T

Table 6: Truth table for negation (¬).

and, or, and exclusive or. We use a truth table to specify
the values for all possible combinations of inputs; see Ta-
ble 7. Binary operations have two input variables, each in
one of two states. The number of different inputs is there-
fore only four. We have seen the use of these particular

p q p ∧ q p ∨ q p ⊕ q

T T T T F

T F F T T

F T F T T

F F F F F

Table 7: Truth table for and (∧), or (∨), and exclusive or (⊕)
operations.

boolean operations before, namely in the definition of the
common set operations; see Figure 8.

Ac = {x | x 6∈ A};
A ∩ B = {x | x ∈ A and x ∈ B};
A ∪ B = {x | x ∈ A or x ∈ B};
A ⊕ B = {x | x ∈ A xor x ∈ B};
A − B = {x | x ∈ A and x 6∈ B}.

Figure 8: From left to right: the complement of one set and the
intersection, union, symmetric difference, and difference of two
sets.

24

Algebraic properties. We observe that boolean opera-
tions behave very much like ordinary arithmetic opera-
tions. For example, they follow the same kind of rules
when we transform them.

• All three binary operations are commutative, that is,

p ∧ q iff q ∧ p;

p ∨ q iff q ∨ p;

p ⊕ q iff q ⊕ p.

• The and operation distributes over the or operation,
and vice versa, that is,

p ∧ (q ∨ r) iff (p ∧ q) ∨ (p ∧ r);

p ∨ (q ∧ r) iff (p ∨ q) ∧ (p ∨ r).

Similarly, negation distributes over and and or, but it
changes one into the other as it does so. This is known
as de Morgan’s Law.

DE MORGAN’ S LAW. Lettingp andq be two variables,

¬(p ∧ q) iff ¬p ∨ ¬q;

¬(p ∨ q) iff ¬p ∧ ¬q.

PROOF. We construct the truth table, with a row for each
combination of truth values forp andq; see Table 8. Since

p q ¬(p ∧ q) ¬p ∨ ¬q

T T F F

T F T T

F T T T

F F T T

Table 8: The truth table for the expressions on the left and the
right of the first de Morgan Law.

the two relations are symmetric, we restrict our attention
to the first. We see that the truth values of the two expres-
sions are the same in each row, as required.

Implications. The implication is another kind of binary
boolean operation. It frequently occurs in statements of
lemmas and theorems. An example is Fermat’s Little The-
orem. To emphasize the logical structure, we writeA
for the statement “n is prime” andB for “an−1 mod n =
1 for every non-zeroa ∈ Zn”. There are different, equiv-
alent ways to restate the theorem, namely “ifA thenB”;
“A impliesB”; “ A only if B”; “ B if A”. The operation is

p q p ⇒ q ¬q ⇒ ¬p ¬(p ∧ ¬q) ¬p ∨ q

T T T T T T

T F F F F F

F T T T T T

F F T T T T

Table 9: The truth table for the implication (⇒).

defined in Table 9. We see the contrapositive in the second
column on the right, which is equivalent, as expected. We
also note thatq is forced to be true ifp is true and thatq
can be anything ifp is false. This is expressed in the third
column on the right, which relates to the last column by
de Morgan’s Law. The corresponding set operation is the
complement of the difference,(A − B)c; see Figure 9 on
the left.

Figure 9: Left: the complement of the difference between the
two sets. Right: the complement of the symmetric difference.

We recall that a logical statement is either true or false.
This is referred to as the law of theexcluded middle. In
other words, a statement is true precisely when it is not
false. There is no allowance for ambiguities or paradoxes.
An example is the sometimes counter-intuitive definition
that false implies true is true. WriteA for the statement
“it is raining”, B for “I use my umbrella”, and consider
A ⇒ B. Hence, if it is raining then I use my umbrella.
This does not preclude me from using the umbrella if it is
not raining. In other words, the implication is not false if
I use my umbrella without rain. Hence, it is true.

Equivalences. If implications go both ways, we have an
equivalence. An example is the existence of a multiplica-
tive inverse iff the multiplication permutes. We writeA for
the statement “a has a multiplicative inverse inZn” andB
for “the functionM : Zn → Zn defined byM(x) = a ·nx
is bijective”. There are different, equivalent ways to re-
state the claim, namely “A if and only if B” and “A andB
are equivalent”. The operation is defined in Table 10. The
last column shows that equivalence is the opposite of the
exclusive or operation. Figure 9 shows the corresponding
set operation on the right.

Recalling the definition of a group, we may ask which

25

p q p ⇔ q (p ⇒ q) ∧ (q ⇒ p) ¬(p ⊕ q)

T T T T T

T F F F F

F T F F F

F F T T T

Table 10: The truth table for the equivalence (⇔).

of the binary operations form an Abelian group. The set is
{F, T}. One of the two must be the neutral element. If we
chooseF thenF ◦ F = F andF ◦T = T ◦ F = T. Further-
more,T ◦T = F is necessary forT to have an inverse. We
see that the answer is the exclusive or operation. Mapping
F to 0 andT to 1, as it is commonly done in programming
languages, we see that the exclusive or can be interpreted
as adding modulo2. Hence,({F, T},⊕) is isomorphc to
(Z2, +2).

Summary. We have learned about the main components
of logical statements, boolean variables and operations.
We have seen that the operations are very similar to the
more familiar arithmetic operations, mapping one or more
boolean input variable to a boolean output variable.

26

9 Quantifiers

Logical statements usually includevariables, which range
over sets of possible instances, often referred to asuni-
verses. We use quantifiers to specify that something holds
for all possible instances or for some but possibly not all
instances.

Universal and existential quantifiers. We introduce
the concept by taking an in-depth look at a result we have
discussed in Chapter II.

EUCLID ’ S DIVISION THEOREM. Letting n be a posi-
tive integer, for every integerm there are unique integers
q andr, with 0 ≤ r < n, such thatm = nq + r.

In this statement, we haven, m, q, r as variables. They
are integers, soZ is the universe, except that some of the
variables are constrained further, that is,n ≥ 1 and0 ≤
r < n. The claim is “for all” m “there exist” q andr.
These are quantifiers expressed in English language. The
first is called theuniversal quantifier:

∀x [p(x)]: for all instantiations of the variablex, the
statementp(x) is true.

For example, ifx varies over the integers then this is
equivalent to

. . . ∧ p(−1) ∧ p(0) ∧ p(1) ∧ p(2) ∧ . . .

The second is theexistential quantifier:

∃x [q(x)]: there exists an instantiation of the variablex
such that the statementq(x) is true.

For the integers, this is equivalent to

. . . ∨ q(−1) ∨ q(0) ∨ q(1) ∨ q(2) ∨ . . .

With these quantifiers, we can restate Euclid’s Division
Theorem more formally:

∀n ≥ 1 ∀m ∃q ∃0 ≤ r < n[m = nq + r].

Negating quantified statements. Recall de Morgan’s
Law for negating a conjunction or a disjunction:

¬(p ∧ q) ⇔ ¬p ∨ ¬q;

¬(p ∨ q) ⇔ ¬p ∧ ¬q.

The corresponding rules for quantified statements are

¬ (∀x [p(x)]) ⇔ ∃x [¬p(x)];

¬ (∃x [q(x)]) ⇔ ∀x [¬q(x)].

We get the first line by applying de Morgan’s first Law
to the conjunction that corresponds to the expression on
the left hand side. Similarly, we get the second line by
applying de Morgan’s second Law. Alternatively, we can
derive the second line from the first. Since both sides of
the first line are equivalent, so are its negations. Now, all
we need to do it to substitute¬q(x) for p(x) and exchange
the two sides, which we can because⇔ is commutative.

Big-Oh notation. We practice the manipulation of
quantified statements by discussing the big-Oh notation
for functions. It is commonly used in statements about the
convergence of an iteration or the running time of an algo-
rithm. We writeR+ for the set of positive real numbers.

DEFINITION. Let f andg be functions fromR+ to R+.
Thenf = O(g) if there are positive constantsc andn0

such thatf(x) ≤ cg(x) wheneverx > n0.

This notation is useful in comparing the asymptotic be-
havior of the functionsf andg, that is, beyond a constant
n0. If f = O(g) thenf can grow at most a constant times
as fast asg. For example, we do not havef = O(g) if
f(x) = x2 andg(x) = x. Indeed,f(x) = xg(x) so there
is no constantc such thatf(x) ≤ cg(x) because we can
always choosex larger thanc andn0 and get a contradic-
tion. We rewrite the definition in more formal notation.
The statementf = O(g) is equivalent to

∃c > 0 ∃n0 > 0 ∀x ∈ R [x > n0 ⇒ f(x) ≤ cg(x)].

We can simplify by absorbing the constraint ofx being
larger than the constantn0 into the last quantifying state-
ment:

∃c > 0 ∃n0 > 0 ∀x > n0 [f(x) ≤ cg(x)].

We have seen above that negating a quantified statement
reverses all quantifiers and pulls the negation into the un-
quantified, inner statement. Recall that¬(p ⇒ q) is equiv-
alent top∧¬q. Hence, the statementf 6= O(g) is equiva-
lent to

∀c > 0 ∀n0 > 0 ∃x ∈ R [x > n0 ∧ f(x) > cg(x)].

We can again simplify by absorbing the constraint onx
into the quantifying statement:

∀c > 0 ∀n0 > 0 ∃x > n0 [f(x) > cg(x)].

27

Big-Theta notation. Recall that the big-Oh notation is
used to express that one function grows asymptotically
at most as fast as another, allowing for a constant factor
of difference. The big-Theta notation is stronger and ex-
presses that two functions grow asymptotically at the same
speed, again allowing for a constant difference.

DEFINITION. Let f andg be functions fromR+ to R+.
Thenf = Θ(g) if f = O(g) andg = O(f).

Note that in big-Oh notation, we can always increase the
constantsc andn0 without changing the truth value of the
statement. We can therefore rewrite the big-Theta state-
ment using the larger of the two constantsc and the larger
of the two constantsn0. Hence,f = Θ(g) is equivalent to

∃c > 0 ∃n0 > 0 ∀x > n0 [f(x) ≤ cg(x)∧g(x) ≤ cf(x)].

Here we can further simplify by rewriting the two inequal-
ities by a single one:1cg(x) ≤ f(x) ≤ cg(x). Just for
practice, we also write the negation in formal notation.
The statementf 6= Θ(f) is equivalent to

∀c > 0 ∀n0 > 0 ∃x > n0 [cg(x) < f(x)∨cf(x) < g(x)].

Because the two inequalities are connected by a logical or,
we cannot simply combine them. We could by negating it
first, ¬(1

cg(x) ≤ f(x) ≤ cg(x)), but this is hardly easier
to read.

Big-Omega notation. Complementary to the big-Oh
notation, we have

DEFINITION. Let f andg be functions fromR+ to R+.
Thenf = Ω(g) if g = O(f).

In formal notation,f = Ω(g) is equivalent to

∃c > 0 ∃n0 > 0∀x > n0 [f(x) ≥ cg(x)].

We may think of big-Oh like a less-than-or-equal-to for
functions, and big-Omega as the complementary greater-
than-or-equal-to. Just as we havex = y iff x ≤ y and
x ≥ y, we havef = Θ(g) iff f = O(g) andf = Ω(g).

Little-oh and little-omega notation. For completeness,
we add notation that corresponds to the strict less-than and
greater-than relations.

DEFINITION. Let f andg be functions fromR+ to R+.
Thenf = o(g) if for all constantsc > 0 there exists a
constantn0 > 0 such thatf(x) < cg(x) wheneverx >
n0. Furthermore,f = ω(g) if g = o(f).

This is not equivalent tof = O(g) and f 6= Ω(g).
The reason for this is the existence of functions that can-
not be compared at all. Consider for examplef(x) =
x2(cos x + 1). For x = 2kπ, k a non-negative integer,
we havef(x) = 2x2, while for x = (2k + 1)π, we
havef(x) = 0. Let g(x) = x. For even multiples of
π, f grows much fast thang, while for odd multiples of
π it grows much slower thang, namely not at all. We
rewrite the little-Oh notation in formal notation. Specifi-
cally, f = o(g) is equivalent to

∀c > 0 ∃n0 > 0 ∀x > n0 [f(x) < cg(x)].

Similarly, f = ω(g) is equivalent to

∀c > 0 ∃n0 > 0 ∀x > n0 [f(x) >
1

c
g(x)].

In words, no matter how small our positive constantc is,
there always exists a constantn0 such that beyond that
constant,f(x) is larger thang(x) overc. Equivalently, no
matter how big our constantc is, there always exists a con-
stantn0 such that beyond that constant,f(x) is larger than
c timesg(x). We can thus simplify the formal statement
by substituting[f(x) > cg(x)] for the inequality.

28

10 Inference

In this section, we discuss the application of logic to prov-
ing theorems. In principle, every proof should be re-
ducible to a sequence of simple logical deductions. While
this is not practical for human consumption, there have
been major strides toward that goal in computerized proof
systems.

Modus ponens. This is an example ofdirect inference,
the cornerstone of logical arguments.

PRINCIPLE OFMODUS PONENS. From p andp ⇒ q,
we may concludeq.

We read this as a recipe to proveq. First we provep, then
we prove thatp impliesq, and finally we concludeq. Let
us take a look at Table 11 to be sure. We see that modus

p q (p ∧ (p ⇒ q)) ⇒ q
T T T T T T T

T F T F F T F

F T F F T T T

F F F F T T F

Table 11: The truth table for modus ponens.

ponens is indeed a tautology, that is, it is always true. Ev-
ery theorem is this way, namely always true.

Other methods of direct inference. There are many
other direct proof principles, all easy to verify. Some are
straighforward re-interpretations of logical formulas and
others use logical equivalences we have learned about.
Here are but a few:

p andq then p ∧ q;

p or q then p ∨ q;

q or¬p then p ⇒ q;

¬q andp then p 6⇒ q;

p ⇒ q andq ⇒ p then p ⇔ q;

p ⇒ q andq ⇒ r then p ⇔ r.

The last principle is perhaps more interesting than the oth-
ers because it is the only one among the six that is not an
equivalence; see Table 12.

Contrapositive. This is the first example of anindirect
inferencemethod.

p q r ((p ⇒ q) ∧ (q ⇒ r)) ⇒ (p ⇒ r)
T T T T T T T T

T T F T F F T F

T F T F F T T T

T F F F F T T F

F T T T T T T T

F T F T F F T T

F F T T T T T T

F F F T T T T T

Table 12: The truth table for reasoning by transitivity.

PRINCIPLE OFCONTRAPOSITION. The statements
p ⇒ q and¬q ⇒ ¬p are equivalent, and so a proof of one
is a proof of the other.

We have seen a truth table that shows the equivalence of
the two statements earlier, in Section 8. Let us look at an
example.

CLAIM . If n is a positive integer withn2 > 25 then
n > 5.

PROOF. The statementp is that n is a positive integer
whose square is larger than25. The statementq is thatn is
larger than5. We could argue directly but then we would
need to know something about talking square roots. In-
stead, let us argue indirectly. Suppose¬q, that is,n ≤ 5.
By monotonicity of multiplication, we have

n2 ≤ 5n ≤ 5 · 5 ≤ 25.

Now, by transitivity of the smaller-than-or-equal-to rela-
tion, we haven2 ≤ 25. Thus¬q implies¬p.

Example: Chinese remainders. Another instructive
example is a result we have seen in Section 6. Letm andn
be relative prime, positive integers. We map each integer
in Zmn to the pair of remainders, that is, for0 ≤ x < mn
we definef(x) = (x mod m, x mod n).

CHINESE REMAINDER THEOREM. If x 6= y both be-
long toZmn thenf(x) 6= f(y).

PROOF. We use again the indirect approach by contrapo-
sition. Assumef(x) = f(y). Then

x mod m = y mod m;

x mod n = y mod n.

29

Hence,

(x − y) mod m = 0;

(x − y) mod n = 0.

Therefore,x−y is a multiple of bothm andn. Hence,(x−
y) mod mn = 0 and thereforex mod mn = y mod mn,
which contradicts thatx 6= y in Zmn.

Reduction to Absurdity. Another powerful indirect
proof technique is by contradiction.

PRINCIPLE OFREDUCTION TO ABSURDITY. If from
assumingp and¬q we can deriver as well as¬r then
p ⇒ q.

Herer can be any statement. Often we use a statementr
that is always true (or always false) so that we only need to
derive¬r (or r) from p and¬q. Let us take a look at Table
13. As with all the proof methods, it is best to see exam-

p q r ((p ∧ ¬q) ⇒ (r ∧ ¬r)) ⇒ (p ⇒ q)
T T T F T F T T

T T F F T F T T

T F T T F F T F

T F F T F F T F

F T T F T F T T

F T F F T F T T

F F T F T F T T

F F F F T F T T

Table 13: The truth table for the reduction to absurdity.

ples. There are many and a large variety because different
principles are combined, or made more complicated, etc.

Example: irrational numbers. A real numberu is ra-
tional if there are integersm and n such thatu = m

n
and irrational otherwise. The set of rational numbers is
denoted asQ. For any two different rational numbers,
u < w, we can always find a third that lies strictly be-
tween them. For example, ifw = k

l then

v =
u + w

2

=
ml + nk

nl

lies halfway betweenu andw. This property is sometimes
expressed by saying the rational numbers aredensein the
set of real numbers. How do we know that not all real
numbers are rational?

CLAIM .
√

5 is irrational.

PROOF. Assume the square root of5 is rational, that is,
there exist integersm andn such that

√
5 = m

n . Squaring
the two sides, we get

5 =
m2

n2

or, equivalently,5n2 = m2. But m2 has an even number
of prime factors, namely each factor twice, while5n2 has
an odd number of prime factors, namely5 together with an
even number of prime factors forn2. Hence,5n2 = m2 is
not possible, a contradiction.

We take a look at the logic structure of this proof. Let

p be the statement that
√

5
2

= 5 andq the statement that√
5 is irrational. Thus¬q is the statement that

√
5 = m

n .
From assumingp and¬q, we deriver, that is the state-
ment5n2 = m2. But we also have¬r, because each in-
teger has a unique decomposition into prime factors. We
thus derivedr and¬r. But this cannot be true. Using the
Principle of Reduction to Absurdity, we conclude thatp
impliesq. By modus ponens, assumingp givesq.

Summary. We have learned that theorems are tautolo-
gies and there are different ways to prove them. As ap-
plications of logic rules we have discussed direct methods
(Principle of Modus Ponens) and indirect methods (Prin-
ciple of Contrapositive and Principle of Reduction to Ab-
surdity).

30

Third Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is February 23.

Question 1. (20 = 10+10 points). (Problem 3.1-6 in our
textbook). Show thatp⊕q is equivalent to(p∧¬q)∨
(¬p∧ q). State the corresponding relation in terms of
sets and set operations.

Question 2. (20 = 10 + 10 points). (Problem 3.2-14 in
our textbook). Letx, y, z be variables andp, q logical
statements that depend on one variable.

(a) Are the following two compound logical state-
ments equivalent?

1. (∃x ∈ R [p(x)]) ∧ (∃y ∈ R [q(y)]);
2. ∃z ∈ R [p(z) ∧ q(z)].

(Justify your answer.)

(b) Are the following two compound logical state-
ments equivalent?

1. (∃x ∈ R [p(x)]) ∨ (∃y ∈ R [q(y)]);
2. ∃z ∈ R [p(z) ∨ q(z)].

(Justify your answer.)

Question 3. (20 points). (Problem 3.3-6 in our textbook).
Is the statementp ⇒ q equivalent to the statement
¬p ⇒ ¬q? (If yes, why? If no, why not?)

Question 4. (20 points). (Problem 3.3-14 in our text-
book). Prove that there is no largest prime number.
In other words, for every prime number there is an-
other, larger prime number.

31

IV I NDUCTION

This is a general purpose proof technique that works in a bottom-up fashion. Knowing that a statement is true for a
collection of instances, we argue that it is also true for a new instance, which we then add to the collection. Repeating this
step, we establish the statement for a countable collection.

11 Mathematical Induction
12 Recursion
13 Growth Rates
14 Solving Recurrence Relations

Homework Assignments

32

11 Mathematical Induction

In philosophy,deductionis the process of taking a general
statement and applying it to a specific instance. For exam-
ple: all students must do homework, and I am a student;
therefore, I must do homework. In contrast,induction is
the process of creating a general statement from observa-
tions. For example: all cars I have owned need to be re-
paired at some point; therefore, all cars will need to be
repaired at some point. A similar concept is used in math-
ematics to prove that a statement is true for all integers.
To distinguish it from the less specific philosophical no-
tion, we call itmathematical inductionof which we will
introduce two forms. We begin by considering an example
from Section 4, showing that the idea behind Mathemati-
cal Induction is a familiar one.

Euclid’s Division Theorem. We find the smallest coun-
terexample in order to prove the following theorem.

EUCLID ’ S DIVISION THEOREM. Letting n ≥ 1, for
every non-negative integerm there are unique integersq
and0 ≤ r < n such thatm = nq + r.

PROOF. Assume the opposite, that is, there is a non-
negative integerm for which no suchq andr exist. We
choose the smallest suchm. Note thatm cannot be smaller
thann, else we haveq = 0 andr = m, andm cannot be
equal ton, else we haveq = 1 andr = 0. It follows that
m′ = m − n is a positive integer less thanm. Thus, there
exist integersq′ and0 ≤ r′ < n such thatm′ = nq′ + r′.
If we addn on both sides, we obtainm = (q′ + 1)n + r′.
If we takeq = q′ + 1 andr = r′, we getm = nq + r,
with 0 ≤ r < n. Thus, by the Principle of Reduction to
Absurdity, such integersq andr exist.

Let p(k) be the statement that there exist integersq and
0 ≤ r < n with k = nq + r. Then, the above proof can
be summarized by

p(m − n) ∧ ¬p(m) =⇒ p(m) ∧ ¬p(m).

This is the contradiction that implies¬p(m) cannot be
true. We now focus on the statementp(m − n) ⇒ p(m).
This is the idea of Mathematical Induction which bypasses
the construction of a contradiction.

Example: sum of integers. We consider the familiar
problem of summing the firstn positive integers. Recall
that

(

n+1
2

)

= n(n+1)
2 .

CLAIM . For alln ≥ 0, we have
∑n

i=0 i =
(

n+1
2

)

.

PROOF. First, we note that
∑0

i=0 i = 0 =
(

1
2

)

. Now, we
assume inductively that forn > 0, we have

n−1
∑

i=0

i =

(

n

2

)

.

If we addn on both sides, we obtain

n
∑

i=0

i =

(

n

2

)

+ n

=
(n − 1)n

2
+

2n

2

which is (n+1)n
2 =

(

n+1
2

)

. Thus, by the Principle of Math-
ematical Induction,

n
∑

i=0

i =

(

n + 1

2

)

for all non-negative integersn.

To analyze why this proof is correct, we letp(k) be the
statement that the claim is true forn = k. Forn = 1 we
havep(1)∧ [p(1) ⇒ p(2)]. Hence, we getp(2) by Modus
Ponens. We can see that this continues:

p(1) ∧ [p(1) ⇒ p(2)] hence p(2);

p(2) ∧ [p(2) ⇒ p(3)] hence p(3);

.

p(n − 1) ∧ [p(n − 1) ⇒ p(n)] hence p(n);

.

Thus,p(n0) andp(n − 1) ⇒ p(n) for all n > n0 implies
p(n) for all n ≥ n0.

The weak form. We formalize the proof technique into
the first, weak form of the principle. The vast majority of
applications of Mathematical Induction use this particular
form.

MATHEMATICAL INDUCTION (WEAK FORM). If the
statementp(n0) is true, and the statementp(n−1) ⇒ p(n)
is true for all n > n0, thenp(n) is true for all integers
n ≥ n0.

To write a proof using the weak form of Mathematical In-
duction, we thus take the following four steps: it should
have the following components:

33

Base Case:p(n0) is true.

Inductive Hypothesis:p(n − 1) is true.

Inductive Step:p(n − 1) ⇒ p(n).

Inductive Conclusion:p(n) for all n ≥ n0.

Very often but not always, the inductive step is the most
difficult part of the proof. In practice, we usually sketch
the inductive proof, only spelling out the portions that are
not obvious.

Example: sum of powers of two. If we can guess the
closed form expression for a finite sum, it is often easy to
use induction to prove that it is correct, if it is.

CLAIM . For all integersn ≥ 1, we have
∑n

i=1 2i−1 =
2n − 1.

PROOF. We prove the claim by the weak form of the Prin-
ciple of Mathematical Induction. We observe that the
equality holds whenn = 1 because

∑1
i=1 2i−1 = 1 =

21 − 1. Assume inductively that the claim holds forn− 1.
We get ton by adding2n−1 on both sides:

n
∑

i=1

2i−1 =

n−1
∑

i=1

2i−1 + 2n−1

= (2n−1 − 1) + 2n−1

= 2n − 1.

Here, we use the inductive assumption to go from the first
to the second line. Thus, by the Principle of Mathematical
Induction,

∑n
i=1 2i−1 = 2n − 1 for all n ≥ 1.

The strong form. Sometimes it is not enough to use the
validity of p(n−1) to derivep(n). Indeed, we havep(n−
2) available andp(n − 3) and so on. Why not use them?

MATHEMATICAL INDUCTION (STRONG FORM). If the
statementp(n0) is true and the statementp(n0) ∧ p(n0 +
1) ∧ · · · ∧ p(n − 1) ⇒ p(n) is true for alln > n0, then
p(n) is true for all integersn ≥ n0.

Notice that the strong form of the Principle of Mathemat-
ical Induction implies the weak form.

Example: prime factor decomposition. We use the
strong form to prove that every integer has a decompo-
sition into prime factors.

CLAIM . Every integern ≥ 2 is the product of prime
numbers.

PROOF. We know that2 is a prime number and thus also
a product of prime numbers. Suppose now that we know
that every positive number less thann is a product of prime
numbers. Then, ifn is a prime number we are done. Oth-
erwise,n is not a prime number. By definition of prime
number, we can write it is the product of two smaller pos-
itive integers,n = a · b. By our supposition, botha and
b are products of prime numbers. The product,a · b, is
obtained by merging the two products, which is again a
product of prime numbers. Therefore, by the strong form
of the Principle of Mathematical Induction, every integer
n ≥ 2 is a product of prime numbers.

We have used an even stronger statement before,
namely that the decomposition into prime factors is
unique. We can use the Reduction to Absurdity to prove
uniqueness. Supposen is the smallest positive integer that
has two different decompositions. Leta ≥ 2 be the small-
est prime factor in the two decompositions. It does not be-
long to the other decomposition, else we could cancel the
two occurrences ofa and get a smaller integer with two
different decompositions. Clearly,n mod a = 0. Further-
more,ri = bi mod a 6= 0 for each prime factorbi in the
other decomposition ofn. We have

n mod a =

(

∏

i

bi

)

mod a

=

(

∏

i

ri

)

mod a.

Since all theri are smaller thana anda is a prime number,
the latter product can only be zero if one or theri is zero.
But this contradicts that all thebi are prime numbers larger
thana. We thus conclude that every integer larger than one
has a unique decomposition into prime factors.

Summary. Mathematical Induction is a tool to prove
that a property is true for all positive integers. We used
Modus Ponens to prove the weak as well as the strong
form of the Principle of Mathematical Induction.

34

12 Recursion

We now describe how recurrence relations arise from re-
cursive algorithms, and begin to look at ways of solving
them. We have just learned one method that can some-
times be used to solve such a relation, namely Mathemat-
ical Induction. In fact, we can think of recursion as back-
wards induction.

The towers of Hanoi. Recurrence relations naturally
arise in the analysis of the towers of Hanoi problem. Here
we have three pegs,A, B, C, and initially n disks atA,
sorted from large to small; see Figure 10. The task is to
move then disks fromA to C, one by one, without ever
placing a larger disk onto a smaller disk. The following

A B C

Figure 10: We have a sorted stack of disks atA and useB for
temporary storage to move one disk at a time toC. We needB
to avoid any inversions among the disks.

three steps solve this problem:

• recursively moven − 1 disks fromA to B;

• move then-th disk fromA to C;

• recursively moven − 1 disks fromB to C.

When we move disks from one peg to another, we use the
third peg to help. For the main task, we useB to help.
For the first step, we exchange the roles ofB andC, and
for the third step, we exchange the roles ofA andB. The
number of moves is given by the solution to the recurrence
relation

M(n) = 2M(n − 1) + 1,

with initial conditionM(0) = 0. We may use induction to
show thatM(n) = 2n − 1.

Loan payments. Another example in which recurrence
relations naturally arise is the repayment of loans. This

is an iterative process in which we alternate the payment
of a constant sum with the accumulation of interest. The
iteration ends when the entire loan is payed off. Suppose
A0 is the initial amount of your loan,m is your monthly
payment, andp is the annual interest payment rate. What
is the amount you owe aftern months? We can express it
in terms of the amount owed aftern − 1 months:

T (n) =
(

1 +
p

12

)

T (n − 1) − m.

This is a recurrence relation, and figuring out how much
you owe is the same as solving the recurrence relation.
The number that we are most interested in isn0m, where
n0 is the number of months it takes to getT (n0) = 0.
Instead of attacking this question directly, let us look at a
more abstract, mathematical setting.

Iterating the recursion. Consider the following recur-
rence relation,

T (n) = rT (n − 1) + a,

wherer anda are some fixed real numbers. For example,
we could setr = 1+ p

12 anda = −m to get the recurrence
that describes how much money you owe. After replacing
T (n) by rT (n − 1) + a, we may take another step and
replaceT (n−1) by rT (n−2)+a to getT (n) = r(rT (n−
2) + a) + a. Iterating like this, we get

T (n) = rT (n − 1) + a

= r2T (n− 2) + ra + a

= r3T (n− 3) + r2a + ra + a

.

= rnT (0) + a

n−1
∑

i=0

ri.

The first term on the right hand side is easy, namelyrn

times the initial condition, sayT (0) = b. The second term
is a sum, which we now turn into a nicer form.

Geometric series. The sequence of terms inside a sum
of the form

∑n−1
i=0 ri is referred to as ageometric series.

If r = 1 then this sum is equal ton. To find a similarly
easy expression for other values ofr, we expand both the
sum and itsr-fold multiple:

n−1
∑

i=0

ri = r0 + r1 + r2 + . . . + rn−1;

r

n−1
∑

i=0

ri = r1 + r2 + . . . + rn−1 + rn.

35

Subtracting the second line from the first, we get

(1 − r)

n−1
∑

i=0

ri = r0 − rn

and therefore
∑n−1

i=0 ri = 1−rn

1−r . Now, this allows us to
rewrite the solution to the recurrence as

T (n) = rnb + a
1 − rn

1 − r
,

whereb = T (0) andr 6= 1. Let us consider the possible
scenarios:

Case 1. r = 0. Then,T (n) = a for all n.

Case 2. 0 < r < 1. Then,limn→∞ rn = 0. There-
fore, limn→∞ T (n) = a

1−r .

Case 3. r > 1. The factorsrn of b and rn−1
r−1 of a both

grow with growingn. For positive values ofa and
b, we can expectT (n) = 0 for a negative value ofn.
Multiplying with r−1, we getrnb(r−1)+arn−a =
0 or, equivalently,rn(br − b + a) = a. Dividing by
br − b + a, we getrn = a

br−b+a , and taking the
logarithm to the baser, we get

n = logr

(

a

br − b + a

)

.

For positive values ofa andb, we take the logarithm
of a positive number smaller than one. The solution
is a negative numbern.

We note that the loan example falls into Case 3, withr =
1 + p

12 > 1, b = A0, anda = −m. Hence, we are now
in a position to find out after how many months it takes to
pay back the loan, namely

n0 = logr

(

m

m − A0
p
12

)

.

This number is well defined as long asm > A0
p
12 , which

means your monthly payment should exceed the monthly
interest payment. It better happen, else the amount you
owe grows and the day in which the loan will be payed off
will never arrive.

First-order linear recurrences. The above is an exam-
ple of a more general class of recurrence relations, namely
thefirst-order linear recurrencesthat are of the form

T (n) = f(n)T (n − 1) + g(n).

For the constant functionf(n) = r, we have

T (n) = rnT (0) +

n−1
∑

i=0

rig(n − i)

= rnT (0) +

n−1
∑

i=0

rn−ig(i).

We see that ifg(n) = a, then we have the recurrence we
used above. We consider the exampleT (n) = 2T (n −
1) + n in whichr = 2 andg(i) = i. Hence,

T (n) = 2nT (0) +

n−1
∑

i=0

i

2n−i

= 2nT (0) +
1

2n

n−1
∑

i=0

i2i.

It is not difficult to find a closed form expression for the
sum. Indeed, it is the special case forx = 2 of the follow-
ing result.

CLAIM . Forx 6= 1, we have

n
∑

i=1

ixi =
nxn+2 − (n − 1)xn+1 + x

(1 − x)2
.

PROOF. One way to prove the relation is by induction.
Writing R(n) for the right hand side of the relation, we
haveR(1) = x, which shows that the claimed relation
holds forn = 1. To make the step fromn − 1 to n, we
need to show thatR(n − 1) + xn = R(n). It takes but a
few algebraic manipulations to show that this is indeed the
case.

Summary. Today, we introduced recurrence relations.
To find the solution, we often have to defineT (n) in terms
of T (n0) rather thanT (n − 1). We also saw that differ-
ent recurrences can have the same general form. Knowing
this will help us to solve new recurrences that are similar
to others that we have already seen.

36

13 Growth Rates

How does the time to iterate through a recursive algorithm
grow with the size of the input? We answer this question
for two algorithms, one for searching and the other for
sorting. In both case, we find the answer by solving a
recurrence relation.

Binary Search. We begin by considering a familiar al-
gorithm, binary search. Suppose we have a sorted array,
A[1..n], and we wish to find a particular item,x. Starting
in the middle, we ask whetherx = A[(n + 1)/2]? If it is,
we are done. If not, we have cut the problem in half. We
give a more detailed description in pseudo-code.

l = 1; r = n;
while l ≤ r do m = (l + r)/2;
if x = A[m] then print(m); exit
elseif x < A[m] then r = m − 1;
elseif x > A[m] then l = m + 1

endif
endwhile.

Assumingn = 2k − 1, there are2k−1 − 1 items to the left
and to the right of the middle. LetT (n) be the number
of times we check whetherl ≤ r. We check once at the
beginning, forn = 2k − 1 items, and then some number
of times for half the items. In total, we have

T (n) =

{

T (n−1
2) + 1 if n ≥ 2;

1 if n = 1.

In each iteration,k decreases by one and we getT (n) =
k+1. Sincek = log2(n+1), this givesT (n) = 1+log2 n.
We could verify this by induction.

A similar recurrence relation. Let us consider another
example, without specific algorithm. Suppose we solve a
problem of sizen by first solving one problem of sizen/2
and then doingn units of additional work. Assumingn is
a power of2, we get the following recurrence relation:

T (n) =

{

T (n
2) + n if n ≥ 2;

0 if n = 1.
(1)

Figure 11 visualizes the computation by drawing a node
for each level of the recursion. Even though the sequence
of nodes forms a path, we call this therecursion treeof
the computation. The problem size decreases by a factor

of two from one level to the next. After dividinglog2 n
times, we arrive at size one. This implies that there are
only 1 + log2 n levels. Similarly, the work at each level
decreases by a factor of two from one level to the next.
Assumingn = 2k, we get

T (n) = n +
n

2
+ . . . + 2 + 1

= 2k + 2k−1 + . . . + 21 + 20

= 2k+1 − 1.

Hence,T (n) = 2n − 1.

n

/2

/4

/8

n

n

n

n

/2

/4

/8

n

n

n

n

/2

/4

/8

n

n

n

level #nodes size

1 1

2 1

3 1

4 1

work
per
node

work
per
level

Figure 11: The recursion tree for the relation in Equation (1).

Merge Sort. Next, we consider the problem of sorting a
list of n items. We assume the items are stored in unsorted
order in an arrayA[1..n]. The list is sorted if it consists
of only one item. If there are two or more items then we
sort the firstn/2 items and the lastn/2 items and finally
merge the two sorted lists. We provide the pseudo-code
below. We call the function withℓ = 1 andr = n.

void MERGESORT(ℓ, r)
if ℓ < r then m = (ℓ + r)/2;

MERGESORT(ℓ, m);
MERGESORT(m + 1, r);
MERGE(ℓ, m, r)

endif.

We merge the two sorted lists by scanning them from left
to right, usingn comparisons. It is convenient to relocate
both lists fromA to another array,B, and to add a so-
called stopper after each sublist. These are items that are
larger than all given items. In other words, we assume the
two lists are stored inB[ℓ..m] andB[m + 2..r + 1], with
B[m + 1] = B[r + 2] = ∞. When we scan the two lists,
we move the items back toA, one at a time.

37

void MERGE(ℓ, m, r)
i = ℓ; j = m + 2;
for k = ℓ to r do
if B[i] < B[j] then A[k] = B[i]; i = i + 1;

else A[k] = B[j]; j = j + 1
endif

endfor.

Assumen = 2k so that the sublists are always of the same
length. The total number of comparisons is then

T (n) =

{

2T (n
2) + n if n ≥ 2;

0 if n = 1.

To analyze this recurrence, we look at its recursion tree.

Recursion Tree. We begin with a list of lengthn, from
which we create two shorter lists of lengthn/2 each. After
sorting the shorter lists recursively, we usen comparisons
to merge them. In Figure 12, we show how much work is
done on the first four levels of the recursion. In this ex-

n

/2

/4

/8

n

n

n

n

/2

/4

/8

n

n

n

level

1

2

4

84

3

2

1 n

n

n

n

node
per

work work
per
level

#nodes size

Figure 12: The recursion tree for the merge sort algorithm.

ample, there aren units of work per level, and1 + log2 n
levels in the tree. Thus, sorting with the merge sort algo-
rithm takesT (n) = n log2 n + n comparisons. You can
verify this using Mathematical Induction.

Unifying the findings. We have seen several examples
today, and we now generalize what we have found.

CLAIM . Let a ≥ 1 be an integer andd a non-negative
real number. LetT (n) be defined for integers that are
powers of2 by

T (n) =

{

aT (n
2) + n if n ≥ 2;

d if n = 1.

Then we have the following:

• T (n) = Θ(n) if a < 2;

• T (n) = Θ(n logn) if a = 2;

• T (n) = Θ(nlog
2

a) if a > 2.

In the next lecture, we will generalize this result further
so it includes our finding that binary search takes only a
logarithmic number of comparisons. We will also see a
justification of the three cases.

Summary. Today, we looked at growth rates. We saw
that binary search grows logarithmically with respect to
the input size, and merge sort grows at a rate of order
n log2 n. We also discovered a pattern in a class recur-
rence relations.

38

14 Solving Recurrence Relations

Solving recurrence relations is a difficult business and
there is no catch all method. However, many relations aris-
ing in practice are simple and can be solved with moderate
effort.

A few functions. A solution to a recurrence relation
is generally given in terms of a function, eg.f(n) =
n log2 n, or a class of similar functions, eg.T (n) =
O(n log2 n). It is therefore useful to get a feeling for some
of the most common functions that occur. By plotting the
graphs, as in Figure 13, we get an initial picture. Here we
see a sequence of progressively faster growing functions:
constant, logarithmic, linear, and exponential. However,

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

8

7

Figure 13: The graphs of a small set of functions,f(x) = 1,
f(x) = log2 x, f(x) = x, f(x) = 2x.

such plots can be confusing because they depend on the
scale. For example, the exponential function,f(x) = 2x,
grows a lot faster than the quadratic function,f(x) = x2,
but this would not be obvious if we only look at a small
portion of the plane like in Figure 13.

Three regimes. In a recurrence relation, we distinguish
between thehomogeneouspart, the recursive terms, and
the inhomogeneouspart, the work that occurs. The solu-
tion of depends on the relative size of the two, exhibiting
qualitatively different behavior if one dominates the other
or the two are in balance. Recurrence relations that exhibit
this three-regime behavior are so common that it seems
worthwhile to study this behavior in more detail. We sum-
marize the findings.

MASTER THEOREM. Let a ≥ 1 andb > 1 be integers
andc ≥ 0 andd > 0 real numbers. LetT (n) be defined
for integers that are powers ofb by

T (n) =

{

aT (n
b) + nc if n > 1
d if n = 1.

Then we have the following:

• T (n) = Θ(nc) if logb a < c;

• T (n) = Θ(nc log n) if logb a = c;

• T (n) = Θ(nlog
b

a) if logb a > c.

This behavior can be explained by recalling the formula
for a geometric series,(r0 + . . .+ rn−1)A = 1−rn

1−r A, and
focusing on the magnitude of the constant factor,r. For
0 < r < 1, the sum is roughlyA, the first term, forr = 1,
the sum isn, the number of terms, and forr > 1, the sum
is roughlyrn−1A, the last term.

Let us consider again the recursion tree and, in partic-
ular, the total work at itsi-th level, starting withi = 0 at
the root. There areai nodes and the work at each node is
(n

bi)
c. The work at thei-th level is therefore

ai
(n

bi

)c

= nc ai

bic
.

There are1 + logb n levels, and the total work is the sum
over the levels. This sum is a geometric series, with factor
r = a

bc . It is therefore dominated by the first term ifr < 1,
all terms are the same ifr = 0, and it is dominated by
the last term ifr > 1. To distinguish between the three
cases, we take the logarithm ofr, which is negative, zero,
positive ifr < 1, r = 1, r > 1. It is convenient to take the
logarithm to the basisb. This way we get

logb

a

bc
= logb a − logb bc

= logb a − c.

We haver < 1 iff logb a < c, In which case the dom-
inating term in the series isnc. We haver = 1 iff
logb a = c, in which case the total work isnc logb n. We
haver > 1 iff logb a > c, in which case the dominating
term isd · alog

b
n = d · nlog

b
a. This explains the three

cases in the theorem.

There are extensions of this result that discuss the cases
in whichn is not a lower ofb, we have floors and ceilings
in the relation,a andb are not integers, etc. The general
behavior of the solution remains the same.

39

Using induction. Once we know (or feel) what the solu-
tion to a recurrence relation is, we can often use induction
to verify. Here is a particular relation defined for integers
that are powers of4:

T (n) =

{

T (n
2) + T (n

4) + n if n > 1
1 if n = 1.

To get a feeling for the solution, we group nodes with
equal work together. We getn once, n

2 once, n
4 twice,

n
8 three times,n16 five times, etc. These are the Fibonacci
numbers, which grow exponentially, with basis equal to
the golden ratio, which is roughly1.6. On the other hand,
the work shrinks exponentially, with basis2. Hence, we
have a geometric series with factor roughly0.8, which is
less than one. The dominating term is therefore the first,
and we would guess that the solution is some constant
timesn. We can prove this by induction.

CLAIM . There exists a positive constantc such that
T (n) ≤ cn.

PROOF. For n = 1, we haveT (1) = 1. Hence, the
claimed inequality is true providedc ≥ 1. Using the
strong form of Mathematical Induction, we get

T (n) = T
(n

2

)

+ T
(n

4

)

+ n

= c
n

2
+ c

n

4
+ n

=

(

3c

4
+ 1

)

n.

This is at mostcn provided 3c
4 + 1 ≤ c or, equivalently,

c ≥ 4.

The inductive proof not only verified what we thought
might be the case, but it also gave us the smallest constant,
c = 4, for whichT (n) ≤ cn is true.

Finding the median. Similar recurrence relations arise
in practice. A classic example is an algorithm for finding
thek-smallest of an unsorted set ofn items. We assume
the items are all different. A particularly interesting case
is the middle item, which is called themedian. For odd
n, this is thek-smallest withk = n+1

2 . For evenn, we
setk equal to either the floor or the ceiling ofn+1

2 . The
algorithm takes four steps to find thek-smallest item.

STEP 1. Partition the set into groups of size5 and find the
median in each group.

STEP 2. Find the median of the medians.

STEP 3. Split the set intoS, the items smaller than the
median of the medians, andL, the items larger than
the median of the medians.

STEP 4. Lets = |S|. If s < k−1 then return the(k−s)-
smallest item inL. If s = k − 1 then return the
median of the medians. ifs > k − 1 then return the
k-smallest item inS.

The algorithm is recursive, computing the median of
roughly n

5 medians in Step 2, and then computing an item
either inL or in S. To prove that the algorithm terminates,
we need to show that the sets considered recursively get
strictly smaller. This is easy as long asn is large but tricky
for smalln. We ignore these difficulties.

Figure 14: The upper left shaded region consists of items smaller
than the median of the medians. Symmetrically, the lower right
shaded region consists of items larger than the median of the
medians. Both contain about three tenth of all items.

To get a handle on the running time, we need to estimate
how much smaller thann the setsS andL are. Consider
Figure 14. In one iteration of the algorithm, we eliminate
either all items smaller or all items larger than the median
of the medians. The number of such items is at least the
number in one of the two shaded regions, each containing
roughly 3n

10 items. Hence, the recurrence relation describ-
ing the running time of the algorithm is

T (n) =

{

T (7n
10) + T (n

5) + n if n > n0

n0 if n ≤ n0,

for some large enough constantn0. Since 7
10 + 1

5 is strictly
less than one, we guess that the solution to this recurrence
relation is againO(n). This can be verified by induction.

40

Fourth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is 18 March 2009.

Question 1. (20 = 10 + 10 points).

(a) Prove the following claim:

1 + 7 + · · · + (3n2 − 3n + 1) = n3.

(b) (Problem 4.1-11 in our textbook). Find the error
in the following proof that all positive integers
n are equal. Letp(n) be the statement that all
numbers in ann-element set of positive integers
are equal. Thenp(1) is true. Letn ≥ 2 and
write N for the set ofn first positive integers.
LetN ′ andN ′′ be the sets ofn−1 first andn−1
last integers inN . By p(n− 1), all members of
N ′ are equal, and all members ofN ′′ are equal.
Thus, the firstn − 1 elements ofN are equal
and the lastn− 1 elements ofN are equal, and
so all elements ofN are equal. Therefore, all
positive integers are equal.

Question 2. (20 points). Recall the Chinese Remain-
der Theorem stated for two positive, relatively prime
moduli,m andn, in Section 7. Assuming this theo-
rem, prove the following generalization by induction
onk.

CLAIM . Let n1, n2, . . . , nk be positive, pairwise
relative prime numbers. Then for every sequence of
integersai ∈ Zni

, 1 ≤ i ≤ k, the system ofk linear
equations,

x mod ni = ai,

has a unique solution inZN , whereN =
∏k

i=1 ni.

Question 3. (20 = 10 + 10 points).

(a) (Problem 4.2-13 in our textbook). Solve the
recurrenceT (n) = 2T (n − 1) + 3n, with
T (0) = 1.

(b) (Problem 4.2-17 in our textbook). Solve the re-
currenceT (n) = rT (n−1)+n, with T (0) = 1.
(Assume thatr 6= 1.)

Question 4. (20 = 7 + 7 + 6 points). Consider the fol-
lowing algorithm segment.

int FUNCTION(n)
if n > 0 then

n = FUNCTION(⌊n/a⌋) + FUNCTION(⌊n/b⌋)
endif
returnn.

We can assume thata, b > 1, so the algorithm ter-
minates. In the following questions, letan be the
number of iterations of thewhile loop.

(a) Find a recurrence relation foran.

(b) Find an explicit formula foran.

(c) How fast doesn grow? (bigΘ terms)

Question 5. (20 = 4+4+4+4+4points). (Problem 4.4-
1 in our textbook). Use the Master Theorem to solve
the following recurrence relations. For each, assume
T (1) = 1 andn is a power of the appropriate integer.

(a) T (n) = 8T (n
2) + n.

(b) T (n) = 8T (n
2) + n3.

(c) T (n) = 3T (n
2) + n.

(d) T (n) = T (n
4) + 1.

(e) T (n) = 3T (n
3) + n2.

41

V PROBABILITY

In its simplest form, computing the probability reduces to counting, namely the lucky outcomes and all possible outcomes.
The probability is then the ratio of the two, which is a real number between zero and one.

15 Inclusion-Exclusion
16 Conditional Probability
17 Random Variables
18 Probability in Hashing
19 Probability Distributions

Homework Assignments

42

15 Inclusion-Exclusion

Today, we introduce basic concepts in probability theory
and we learn about one of its fundamental principles.

Throwing dice. Consider a simple example of a prob-
abilistic experiment: throwing two dice and counting the
total number of dots. Each die has six sides with1 to 6
dots. The result of a throw is thus a number between2 and
12. There are36 possible outcomes,6 for each die, which
we draw as the entries of a matrix; see Figure 15.

5432 6 7

8

9

10

11

12

3 4

4

5

5

5

6

6

6

6

7

7

7

7

7

8

8

8

8

9

9

9

10

10 11

5

2

1

3

4

6

1 2 3 4 5 6

2 3 4 5

1/36

2/36

3/36

4/36

5/36

6/36

6 7 8 9 10 11 12

Figure 15: Left: the two dice give the row and the column index
of the entry in the matrix. Right: the most likely sum is7, with
probability 1

6
, the length of the diagonal divided by the size of

the matrix.

Basic concepts. The set of possible outcomes of an ex-
periment is thesample space, denoted asΩ. A possi-
ble outcome is anelement, x ∈ Ω. A subset of out-
comes is anevent, A ⊆ Ω. The probability or weight
of an elementx is P (x), a real number between0 and
1. For finite sample spaces, theprobability of an event is
P (A) =

∑

x∈A P (x).

For example, in the two dice experiment, we setΩ =
{2, 3, . . . , 12}. An event could be to throw an even num-
ber. The probabilities of the different outcomes are given
in Figure 15 and we can compute

P (even) =
1 + 3 + 5 + 5 + 3 + 1

36
=

1

2
.

More formally, we call a functionP : Ω → R a probabil-
ity distributionor aprobability measureif

(i) P (x) ≥ 0 for everyx ∈ Ω;

(ii) P (A ∪̇ B) = P (A) + P (B) for all disjoint events
A ∩ B = ∅;

(iii) P (Ω) = 1.

A common example is theuniform probability distribution
defined byP (x) = P (y) for all x, y ∈ Ω. Clearly, if Ω is
finite then

P (A) =
|A|
|Ω|

for every eventA ⊆ Ω.

Union of non-disjoint events. Suppose we throw two
dice and ask what is the probability that the outcome is
even or larger than7. Write A for the event of having an
even number andB for the event that the number exceeds
7. ThenP (A) = 1

2 , P (B) = 15
36 , andP (A ∩ B) = 9

36 .
The question asks for the probability of the union ofA
andB. We get this by adding the probabilities ofA and
B and then subtracting the probability of the intersection,
because it has been added twice,

P (A ∪ B) = P (A) + P (B) − P (A ∩ B),

which gives 6
12 + 5

12 − 3
12 = 2

3 . If we had three events,
then we would subtract all pairwise intersections and add
back in the triplewise intersection, that is,

P (A ∪ B ∪ C) = P (A) + P (B) + P (C)

−P (A ∩ B) − P (A ∩ C)

−P (B ∩ C) + P (A ∩ B ∩ C).

Principle of inclusion-exclusion. We can generalize the
idea of compensating by subtracting ton events.

PIE THEOREM (FOR PROBABILITY). The probability
of the union ofn events is

P (

n
⋃

i=1

Ai) =

n
∑

k=1

(−1)k+1
∑

P (Ai1 ∩ . . . ∩ Aik
),

where the second sum is over all subsets ofk events.

PROOF. Let x be an element in
⋃n

i=1 Ai andH the subset
of {1, 2, . . . , n} such thatx ∈ Ai iff i ∈ H . The contri-
bution ofx to the sum isP (x) for each odd subset ofH
and−P (x) for each even subset ofH . If we include∅ as
an even subset, then the number of odd and even subsets is
the same. We can prove this using the Binomial Theorem:

(1 − 1)n =

n
∑

i=0

(−1)i

(

n

i

)

.

But in the claimed equation, we do not account for the
empty set. Hence, there is a surplus of one odd subset and
therefore a net contribution ofP (x). This is true for every
element. The PIE Theorem for Probability follows.

43

Checking hats. Supposen people get their hats returned
in random order. What is the chance that at least one gets
the correct hat? LetAi be the event that personi gets the
correct hat. Then

P (Ai) =
(n − 1)!

n!
=

1

n
.

Similarly,

P (Ai1 ∩ . . . ∩ Aik
) =

(n − k)!

n!
.

The event that at least one person gets the correct hat is
the union of theAi. Writing P = P (

⋃n
i=1 Ai) for its

probability, we have

P =

k
∑

i=1

(−1)k+1
∑

P (Ai1 ∩ . . . ∩ Aik
)

=

k
∑

i=1

(−1)k+1

(

n

k

)

(n − k)!

n!

=

k
∑

i=1

(−1)k+1 1

k!

= 1 − 1

2
+

1

3!
− . . . ± 1

n!
.

Recall from Taylor expansion of real-valued functions that
ex = 1 + x + x2/2 + x3/3! + Hence,

P = 1 − e−1 = 0.6 . . .

Inclusion-exclusion for counting. The principle of
inclusion-exclusion generally applies to measuring things.
Counting elements in finite sets is an example.

PIE THEOREM (FOR COUNTING). For a collection of
n finite sets, we have

|
n
⋃

i=1

Ai| =
n
∑

k=1

(−1)k+1
∑

|Ai1 ∩ . . . ∩ Aik
|,

where the second sum is over all subsets ofk events.

The only difference to the PIE Theorem for probability is
we count one for each element,x, instead ofP (x).

Counting surjective functions. Let M andN be finite
sets, andm = |M | andn = |N | their cardinalities. Count-
ing the functions of the formf : M → N is easy. Each

x ∈ M hasn choices for its image, the choices are in-
dependent, and therefore the number of functions isnm.
How many of these functions are surjective? To answer
this question, letN = {y1, y2, . . . , yn} and letAi be the
set of functions in whichyi is not the image of any ele-
ment inM . Writing A for the set of all functions andS
for the set of all surjective functions, we have

S = A −
n
⋃

i=1

Ai.

We already know|A|. Similarly, |Ai| = (n − 1)m. Fur-
thermore, the size of the intersection ofk of theAi is

|Ai1 ∩ . . . ∩ Aik
| = (n − k)m.

We can now use inclusion-exclusion to get the number of
functions in the union, namely,

|
n
⋃

i=1

Ai| =

n
∑

k=1

(−1)k+1

(

n

k

)

(n − k)m.

To get the number of surjective functions, we subtract the
size of the union from the total number of functions,

|S| =
n
∑

i=0

(−1)k

(

n

k

)

(n − k)m.

For m < n, this number should be0, and form = n, it
should ben!. Check whether this is indeed the case for
small values ofm andn.

44

16 Conditional Probability

If we have partial information, this effectively shrinks the
available sample space and changes the probabilities. We
begin with an example.

Monty Hall show. The setting is a game show in which
a prize is hidden behind one of three curtains. Call the
curtainsX , Y , andZ. You can win the prize by guessing
the right curtain.

STEP 1. You choose a curtain.

This leaves two curtains you did not choose, and at least
one of them does not hide the prize. Monty Hall opens this
one curtain and this way demonstrates there is no prize
hidden there. Then he asks whether you would like to
reconsider. Would you?

STEP 2A . You stick to your initial choice.

STEP 2B. You change to the other available curtain.

Perhaps surprisingly, Step 2B is the better strategy. As
shown in Figure 16, it doubles your chance to win the
prize.

2A 2B
1/3

1/3

1/3

1

1

1

1/3

1/3

1/3

1

1

1

X X

Y Y

Z Z

X

X

Z

Y

Z X

Figure 16: Suppose the prize is behind curtainX. The chance of
winning improves from1

3
in 2A to 2

3
in 2B.

Formalization. We are given a sample space,Ω, and
consider two events,A, B ⊆ Ω. The conditional prob-
ability of evenA given eventB is

P (A | B) =
P (A ∩ B)

P (B)
.

We illustrate this definition in Figure 17. If we know that
the outcome of the experiment is inB, the chance that it is
also inA is the fraction ofB occupied byA ∩ B. We say
A andB are independentif knowing B does not change
the probability ofA, that is,

P (A | B) = P (A).

B

A

Ω

Figure 17: AssumingB, the probability ofA is represented by
the fraction of the shaded region,B, that is dark shaded,A ∩ B.

SinceP (A | B) = P (A ∩ B)
P (B) = P (A), we have

P (B) =
P (B ∩ A)

P (A)
= P (B | A).

We thus see that independence is symmetric. However,
it fails to be an equivalence relation because it is neither
reflexive not transitive. Combining the definition of condi-
tional probability with the condition of independence, we
get a formula for the probability of two events occurring
at the same time.

PRODUCT PRINCIPLE FORINDEPENDENTPROB. If A
andB are independent thenP (A ∩ B) = P (A) · P (B).

Trial processes. In many situations, a probabilistic ex-
periment is repeated, possibly many times. We call this a
trial process. It is independentif the i-th trial is not influ-
enced by the outcomes of the precedingi − 1 trials, that
is,

P (Ai | A1 ∩ . . . ∩ Ai−1) = P (Ai),

for eachi.

An example is picking a coin from an bag that contains
one nickel, two dimes, and two quarters. We have an in-
dependent trial process if we always return the coin before
the next draw. The choice we get a quarter is therefore2

5
each time. The chance to pick the quarter three times in a
row is therefore(2

5)3 = 8
125 = 0.064. More generally, we

have the

INDEPENDENTTRIAL THEOREM. In an independent
trial process, the probability of a sequence of outcomes,
a1, a2, . . . , an, is P (a1) · P (a2) · . . . · P (an).

Trial processes that are not independent are generally
more complicated and we need more elaborate tools to

45

compute the probabilities. A useful such tool is the tree
diagram as shown in Figure 18 for the coin picking exper-
iment in which we do not replace the picked coins.

1/4

1/2

1/3

2/3

2/3

1/3

2/3

1/3

2/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

2/3

1/3

2/3

1/4

1/4

1/2

1/4

1/2

1/2

1/5

2/5

2/5

1/30

2/30

2/30

1/30

1/30

2/30

1/30

2/30

2/30

2/30

2/30

2/30

1/30

2/30

2/30

2/30

1/30

2/30

1/3

N

D

Q

D

Q

N

D

Q

N

D

Q

D

Q

D

Q

D

Q

N

Q

N

D

Q

D

Q

N

D

Q

N

D

Figure 18: What is the probability of picking the nickel in three
trials?

Medical test example. Probabilities can be counterintu-
itive, even in situations in which they are important. Con-
sider a medical test for a disease,D. The test mostly gives
the right answer, but not always. Say its false-negative rate
is 1% and its false-positive rate is2%, that is,

P (y | D) = 0.99;

P (n | D) = 0.01;

P (y | ¬D) = 0.02;

P (n | ¬D) = 0.98.

Assume that the chance you have diseaseD is only one in
a thousand, that is,P (D) = 0.001. Now you take the test
and the outcome is positive. What is the chance that you
have the disease? In other words, what isP (D | y)? As
illustrated in Figure 19,

P (D | y) =
P (D ∩ y)

P (y)
=

0.00099

0.02097
= 0.047

This is clearly a case in which you want to get a second
opinion before starting a treatment.

0.001

0.999

0.99

0.02

0.98

0.01

0.00099

0.00001

0.01998

0.97902
D

D
n

n

y

y

Figure 19: Tree diagram showing the conditional probabilities in
the medical test question.

Summary. Today, we learned about conditional proba-
bilities and what it means for two events to be indepen-
dent. The Product Principle can be used to compute the
probability of the intersection of two events, if they are in-
dependent. We also learned about trial processes and tree
diagrams to analyze them.

46

17 Random Variables

A random variableis a real-value function on the sample
space,X : Ω → R. An example is the total number of dots
at rolling two dice, or the number of heads in a sequence
of ten coin flips.

Bernoulli trial process. Recall that an independent trial
process is a sequence of identical experiments in which the
outcome of each experiment is independent of the preced-
ing outcomes. A particular example is theBernoulli trial
processin which the probability of success is the same at
each trial:

P (success) = p;

P (failure) = 1 − p.

If we do a sequence ofn trials, we may defineX equal to
the number of successes. Hence,Ω is the space of possi-
ble outcomes for a sequence ofn trials or, equivalently, the
set of binary strings of lengthn. What is the probability
of getting exactlyk successes? By the Independent Trial
Theorem, the probability of having a sequence ofk suc-
cesses followed byn−k failures ispk(1−p)n−k. Now we
just have to multiply with the number of binary sequences
that containk successes.

BINOMIAL PROBABILITY LEMMA . The probability of
having exactlyk successes in a sequence ofn trials is
P (X = k) =

(

n
k

)

pk(1 − p)n−k.

As a sanity check, we make sure that the probabilities add
up to one. Using the Binomial Theorem, get

n
∑

k=0

P (X = k) =
n
∑

k=0

(

n

k

)

pk(1 − p)n−k,

which is equal to(p + (1 − p))n = 1. Because of this
connection, the probabilities in the Bernoulli trial process
are called thebinomial probabilities.

Expectation. The function that assigns to eachxi ∈ R

the probability thatX = xi is the distribution func-
tion of X , denoted asf : R → [0, 1]; see Figure 20.
More formally, f(xi) = P (A), whereA = X−1(xi).
The expected valueof the random variable isE(X) =
∑

i xiP (X = xi).

As an example, consider the Bernoulli trial process in
which X counts the successes in a sequence ofn trials,

i x
0

1

() ()

Ω

f x = P A

A

Figure 20: The distribution function of a random variable iscon-
structed by mapping a real number,xi, to the probability of the
event that the random variable takes on the valuexi.

that is,P (X = k) =
(

n
k

)

pk(1−p)n−k. The corresponding
distribution function mapsk to the probability of havingk
successes, that is,f(k) =

(

n
k

)

pk(1 − p)n−k. We get the
expected number of successes by summing over allk.

E(X) =

n
∑

k=0

kf(k)

=

n
∑

k=0

k

(

n

k

)

pk(1 − p)n−k

= np

n
∑

k=1

(

n − 1

k − 1

)

pk−1(1 − p)n−k

= np

n−1
∑

k=0

(

n − 1

k

)

pk(1 − p)n−k−1.

The sum in the last line is equal to(p + (1 − p))n−1 = 1.
Hence, the expected number of successes isX = np.

Linearity of expectation. Note that the expected value
of X can also be obtained by summing over all possible
outcomes, that is,

E(X) =
∑

s∈Ω

X(s)P (s).

This leads to an easier way of computing the expected
value. To this end, we exploit the following important
property of expectations.

L INEARITY OF EXPECTATION. Let X, Y : Ω → R be
two random variables. Then

(i) E(X + Y) = E(X) + E(Y);

(ii) E(cX) = cE(X), for every real numberc.

The proof should be obvious. Is it? We use the prop-
erty to recompute the expected number of successes in

47

a Bernoulli trial process. Fori from 1 to n, let Xi be
the expected number of successes in thei-th trial. Since
there is only onei-th trial, this is the same as the proba-
bility of having a success, that is,E(Xi) = p. Further-
more, X = X1 + X2 + . . . + Xn. Repeated applica-
tion of property (i) of the Linearity of Expectation gives
E(X) =

∑n
i=1 E(Xi) = np, same as before.

Indication. The Linearity of Expectation does not de-
pend on the independence of the trials; it is also true ifX
andY are dependent. We illustrate this property by going
back to our hat checking experiment. First, we introduce
a definition. Given an event, the correspondingindicator
random variableis 1 if the event happens and0 otherwise.
Thus,E(X) = P (X = 1).

In the hat checking experiment, we returnn hats in a
random order. LetX be the number of correctly returned
hats. We proved that the probability of returning at least
one hat correctly isP (X ≥ 1) = 1 − e−1 = 0.6 . . .
To compute the expectation from the definition, we would
have to determine the probability of returning exactlyk
hats corrects, for each0 ≤ k ≤ n. Alternatively, we
can compute the expectation by decomposing the random
variable,X = X1 + X2 + . . . + Xn, whereXi is the
expected value that thei-th hat is returned correctly. Now,
Xi is an indicator variable withE(Xi) = 1

n . Note that
theXi are not independent. For example, if the firstn− 1
hats are returned correctly then so is then-th hat. In spite
of the dependence, we have

E(X) =

n
∑

i=1

E(Xi) = 1.

In words, the expected number of correctly returned hats
is one.

Example: computing the minimum. Consider the fol-
lowing algorithm for computing the minimum amongn
items stored in a linear array.

min = A[1];
for i = 2 to n do
if min > A[i] then min = A[i] endif

endif.

Suppose the items are distinct and the array stores them in
a random sequence. By this we mean that each permuta-
tion of then items is equally likely. LetX be the number
of assignments tomin. We haveX = X1+X2+. . .+Xn,

whereXi is the expected number of assignments in thei-
th step. We getXi = 1 iff the i-th item,A[i], is smaller
than all preceding items. The chance for this to happen is
one ini. Hence,

E(X) =

n
∑

i=1

E(Xi)

=

n
∑

i=1

1

i
.

The result of this sum is referred to as then-th harmonic
number, Hn = 1+ 1

2+ 1
3+. . .+ 1

n . We can use
∫ n

x=1
= lnn

to show that then-th harmonic number is approximately
the natural logarithm ofn. More precisely,ln(n + 1) ≤
Hn ≤ 1 + lnn.

Waiting for success. Suppose we have again a Bernoulli
trial process, but this time we end it the first time we hit a
success. DefiningX equal to the index of the first success,
we are interested in the expected value,E(X). We have
P (X = i) = (1 − p)i−1p for eachi. As a sanity check,
we make sure that the probabilities add up to one. Indeed,

∞
∑

i=1

P (X = i) =

∞
∑

i=1

(1 − p)i−1p

= p · 1

1 − (1 − p)
.

Using the Linearity of Expectation, we get a similar sum
for the expected number of trials. First, we note that
∑∞

j=0 jxj = x
(1−x)2 . There are many ways to derive this

equation, for example, by index transformation. Hence,

E(X) =

∞
∑

i=0

iP (X = i)

=
p

1 − p

∞
∑

i=0

i(1 − p)i

=
p

1 − p
· 1 − p

(1 − (1 − p))2
,

which is equal to1
p .

Summary. Today, we have learned about random vari-
able and their expected values. Very importantly, the ex-
pectation of a sum of random variables is equal to the sum
of the expectations. We used this to analyze the Bernoulli
trial process.

48

18 Probability in Hashing

A popular method for storing a collection of items to sup-
port fast look-up is hashing them into a table. Trouble
starts when we attempt to store more than one item in the
same slot. The efficiency of all hashing algorithms de-
pends on how often this happens.

Birthday paradox. We begin with an instructive ques-
tion about birthdays. Consider a group ofn people. Each
person claims one particular day of the year as her birth-
day. For simplicity, we assume that nobody claims Febru-
ary 29 and we talk about years consisting ofk = 365 days
only. Assume also that each day is equally likely for each
person. In other words,

P (personi is born on dayj) =
1

k
,

for all i and allj. Collecting the birthdays of then peo-
ple, we get a multiset ofn days during the year. We are
interested in the event,A, that at least two people have the
same birthday. Its probability is one minus the probability
that then birthdays are distinct, that is,

P (A) = 1 − P (Ā)

= 1 − k

k
· k − 1

k
· . . . · k − n + 1

k

= 1 − k!

(k − n)!kn
.

The probability ofA surpasses one half whenn exceeds
21, which is perhaps surprisingly early. See Figure 21 for
a display how the probability grows with increasingn.

364: 0.0027
363: 0.0082
362: 0.0163
361: 0.0271

360: 0.0404
359: 0.0562
358: 0.0743
357: 0.0946
356: 0.1169 346: 0.4114

347: 0.3791
348: 0.3469
349: 0.3150
350: 0.2836

351: 0.2529
352: 0.2231
353: 0.1944
354: 0.1670
355: 0.1411 345: 0.4436

344: 0.4756
343: 0.5072
342: 0.5383
341: 0.5686

340: 0.5982
339: 0.6268
338: 0.6544
337: 0.6809
336: 0.7063 326: 0.8912

327: 0.8782
328: 0.8640
329: 0.8487
330: 0.8321

331: 0.8143
332: 0.7953
333: 0.7749
334: 0.7533
335: 0.7304

0

10 20 30 40

1

0

n

Figure 21: The probability that at least two people in a groupof
n share the same birthday.

Hashing. The basic mechanism in hashing is the same
as in the assignment of birthdays. We haven items and
map each to one ofk slots. We assume then choices of
slots are independent. Acollision is the event that an item

is mapped to a slot that already stores an item. A possible
resolution of a collision adds the item at the end of a linked
list that belongs to the slot, but there are others. We are
interested in the following quantities:

1. the expected number of items mapping to same slot;

2. the expected number of empty slots;

3. the expected number of collisions;

4. the expected number of items needed to fill allk slots.

Different hashing algorithms use different mechanisms for
resolving collisions. The above quantities have a lot to say
about the relative merits of these algorithms.

Items per slot. Since all slots are the same and none is
more preferred than any other, we might as well determine
the expected number of items that are mapped to slot1.
Consider the corresponding indicator random variable,

Xi =

{

1 if item i is mapped to slot1;
0 otherwise.

The number of items mapped to slot1 is thereforeX =
X1 + X2 + . . . + Xn. The expected value ofXi is 1

k , for
eachi. Hence, the expected number of items mapped to
slot1 is

E(X) =
n
∑

i=1

E(Xi) =
n

k
.

But this is obvious in any case. As mentioned earlier, the
expected number of items is the same for every slot. Writ-
ing Yj for the number of items mapped to slotj, we have
Y =

∑k
j=1 Yj = n. Similarly,

E(Y) =

k
∑

j=1

E(Yj) = n.

Since the expectations are the same for all slots, we there-
fore haveE(Yj) = n

k , for eachj.

Empty slots. The probability that slotj remains empty
after mapping alln items is(1 − 1

k)n. Defining

Xj =

{

1 if slot j remains empty;
0 otherwise,

we thus getE(Xj) = (1 − 1
k)n. The number of empty

slots isX = X1 + X2 + . . . + Xk. Hence, the expected

49

number of empty slots is

E(X) =

k
∑

j=1

E(Xj) = k

(

1 − 1

k

)n

.

Fork = n, we havelimn→∞(1− 1
n)n = e−1 = 0.367 . . .

In this case, we can expect about a third of the slots to
remain empty.

Collisions. The number of collisions can be determined
from the number of empty slots. WritingX for the num-
ber of empty slots, as before, we havek−X items hashed
without collision and therefore a total ofn − k + X col-
lisions. WritingZ for the number of collisions, we thus
get

E(Z) = n − k + E(X)

= n − k + k

(

1 − 1

k

)n

.

For k = n, we getlimn→∞ n(1 − 1
n)n = n

e . In words,
about a third of the items cause a collision.

Filling all slots. How many items do we need to map
to thek slots until they store at least one item each? For
obvious reasons, this question is sometimes referred to as
the coupons collector problem. The crucial idea here is
to defineXj equal to the number of items it takes to go
from j − 1 to j filled slots. Filling thej-th slot is an
infinite Bernoulli process with success probability equal
to p = k−j+1

k . Last lecture, we learned that the ex-
pected number of trials until the first success is1

p . Hence,

E(Xj) = k
k−j+1 . The number of items needed to fill all

slots isX = X1 + X2 + . . . + Xk. The expected number
is therefore

E(X) =
k
∑

j=1

E(Xj)

=

k
∑

j=1

k

k − j + 1

= k

k
∑

j=1

1

j

= kHk.

As mentioned during last lecture, this is approximatelyk
times the natural logarithm ofk. More precisely, we have
k ln(k + 1) ≤ kHk ≤ k(1 + ln k).

50

19 Probability Distributions

Although individual events based on probability are un-
predictable, we can predict patterns when we repeat the
experiment many times. Today, we will look at the pattern
that emerges from independent random variables, such as
flipping a coin.

Coin flipping. Suppose we have a fair coin, that is, the
probability of getting head is precisely one half and the
same is true for getting tail. LetX count the times we get
head. If we flip the coinn times, the probability that we
getk heads is

P (X = k) =

(

n

k

)

/2n.

Figure 22 visualizes this distribution in the form of a his-
togram forn = 10. Recall that thedistribution function
maps every possible outcome to its probability,f(k) =
P (X = k). This makes sense when we have a discrete
domain. For a continuous domain, we consider thecu-
mulative distribution functionthat gives the probability
of the outcome to be within a particular range, that is,
∫ b

x=a f(x) dx = P (a ≤ X ≤ b).

.30

.25

.20

.15

.10

.05

0 1 2 3 4 5 6 7 8 9 10

Figure 22: The histogram that the shows the probability of get-
ting 0, 1, . . . ,10 heads when flipping a coin ten times.

Variance. Now that we have an idea of what a distribu-
tion function looks like, we wish to find succinct ways of
describing it. First, we note thatµ = E(X) is the expected
value of our random variable. It is also referred to as the
meanor theaverageof the distribution. In the example
above, whereX is the number of heads in ten coin flips,
we haveµ = 5. However, we would not be surprised if we
had four or six heads but we might be surprised if we had

zero or ten heads when we flip a coin ten times. To express
how surprised we should be we measure the spread of the
distribution. Let us first determine how close we expect a
random variable to be to its expectation,E(X − E(X)).
By linearity of expectation, we have

E(X − µ) = E(X) − E(µ) = µ − µ = 0.

Hence, this measurement is not a good description of the
distribution. Instead, we use the expectation of the square
of the difference to the mean. Specifically, thevarianceof
a random variableX , denoted asV (X), is the expectation
E
(

(X − µ)2
)

. Thestandard deviationis the square root
of the variance, that is,σ(X) = V (X)1/2. If X4 is the
number of heads we see in four coin flips, thenµ = 2 and

V (X4) =
1

16

[

(−2)2 + 4 · (−1)2 + 4 · 12 + 22
]

,

which is equal to1. For comparison, letX1 be the number
of heads that we see in one coin flip. Thenµ = 1

2 and

V (X1) =
1

2

[

(0 − 1

2
)2 + (1 − 1

2
)2
]

,

which is equal to one quarter. Here, we notice that the
variance of four flips is the sum of the variances for four
individual flips. However, this property does not hold in
general.

Variance for independent random variables. Let X
andY be independent random variables. Then, the prop-
erty that we observed above is true.

ADDITIVITY OF VARIANCE. If X andY are indepen-
dent random variables thenV (X + Y) = V (X) + V (Y).

We first prove the following more technical result.

LEMMA . If X andY are independent random variables
thenE(XY) = E(X)E(Y).

PROOF. By definition of expectation,E(X)E(Y) is the
product of

∑

i xiP (X = xi) and
∑

j yjP (Y = yj).
Pushing the summations to the right, we get

E(X)E(Y) =
∑

i

∑

j

xiyjP (X = xi)P (Y = yj)

=
∑

i,j

zijP (X = xi)P (Y = yj),

51

where zij = xiyj . Finally, we use the independence
of the random variablesX and Y to see thatP (X =
xi)P (Y = yj) = P (XY = zij). With this, we conclude
thatE(X)E(Y) = E(XY).

Now, we are ready to prove the Additivity of Variance,
that is,V (X + Y) = V (X) + V (Y) wheneverX andY
are independent.

PROOF. By definition of variance, we have

V (X + Y) = E
(

(X + Y − E(X + Y))2
)

.

The right hand side is the expectation of(X − µX)2 +
2(X − µX)(Y − µY) + (Y − µY), whereµX andµY

are the expected values of the two random variables. With
this, we get

V (X + Y) = E
(

(X − µX)2
)

+ E
(

(Y − µY)2
)

= V (X) + V (Y),

as claimed.

Normal distribution. If we continue to increase the
number of coin flips, then the distribution function ap-
proaches thenormal distribution,

f(x) =
1√
2π

e−
x
2

2 .

This is the limit of the distribution as the number of coin
flips approaches infinity. For a large number of trials, the

.4

−3 −2 −1 0 1 2 3

Figure 23: The normal distribution with meanµ = 0 and stan-
dard deviationσ = 1. The probability that the random variable
is between−σ andσ is 0.68, between−2σ and2σ is 0.955, and
between−3σ and3σ is 0.997.

normal distribution can be used to approximate the prob-
ability of the sum being betweena andb standard devia-
tions from the expected value.

STANDARD L IMIT THEOREM. The probability of the
number of heads being betweenaσ andbσ from the mean
goes to

1√
2π

∫ b

x=a

e−
x
2

2 dx

as the number of flips goes to infinity.

For example, if we have100 coin flips, thenµ = 50,
V (X) = 25, andσ = 5. It follows that the probability
of having between45 and55 heads is about0.68.

Summary. We used a histogram to visualize the proba-
bility that we will havek heads inn flips of a coin. We
also used the mean,µ, the standard deviation,σ, and the
variance,V (X), to describe the distribution of outcomes.
As n approaches infinity, we see that this distribution ap-
proaches the normal distribution.

52

Fifth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is 8 April 2009.

Question 1. (20 points). Use the Principle of Inclusion-
Exclusion to count the surjective functionsf : M →
N , where where both sets are finite withm = |M |
andn = |N |.

Question 2. (20 = 6 + 7 + 7 points). (Problems 5.3-1 to
3 in our textbook). Suppose you have a fair coin, one
in which a flip gives head with probability one half
and tail with probability one half. You do three flips
with this coin.

(a) What is the probability that two flips in are row
are heads, given that there is an even number of
heads?

(b) Is the event that two flips in a row are heads
independent of the event that there is an even
number of heads?

(c) Is the event of getting at most one tail indepen-
dent of the event that not all flips are identical?

Question 3. (20 points). (Problem 5.4-16 in our text-
book). Suppose you have two nickels, two dimes,
and two quarters in a bag. You draw three coins from
the bag, without replacement. What is the expected
amount of money you get?

Question 4. (20 = 6 + 7 + 7 points). (Problem 5.5-8
in our textbook). Suppose you hashn items intok
locations.

(a) What is the probability that alln items has to
different locations?

(b) What is the probability that thei-th item gives
the first collision?

(c) What is the expected number of items you hash
until the first collision?

Question 5. (20 = 7 + 7 + 6 points). In the program-
ming language of your choice, write the following
two functions:

(a) GETMEAN

(a) GETVARIANCE

These methods should take an array of values as input
(the experimental results for each trial) and return a
floating point number. Then, flip a coin 20 times (or
simulate this on the computer) and use these methods
to compute the mean and the variance of your trials.
Are the results what you would have expected?

Question 6. (20 = 10 + 10 points). (Problems 5.7-8 and
14 in our textbook).

(a) Show that ifX andY are independent, andb
andc are constant, thenX − b andY − c are
independent.

(b) Given a random variableX , how does the vari-
ance ofcX relate to that ofX?

53

VI GRAPHS

A graph is a set of vertices with pairs connected by edges. Theinformation in a particular graph is contained in the choice
of vertices that are connected by edges. This simple combinatorial structure is surprisingly versatile and conveniently
models situations in which the relationship between parts is important.

20 Trees
21 Tours
22 Matching
23 Planar Graphs

Homework Assignments

54

20 Trees

Graphs can be used to model and solve many problems.
Trees are special graphs. Today, we look at various prop-
erties of graphs as well as of trees.

Party problem. Suppose we choose six people at ran-
dom from a party. We call the peopleA throughF . Then,
one of the following must be true:

I. three of the people mutually know each other; or

II. three of the people mutually do not know each other.

We reformulate this claim using a graph representing the
situation. We draw six vertices, one for each person, and
we draw an edge between two vertices if the two people
know each other. We call this asimple graph. Thecomple-
ment graphconsists of the same six vertices but contains
an edge between two vertices iff the graph does not have
an edge between them. Property I says the graph contains
a triangle and Property II says the complement graph con-
tains a triangle. In Figure 24, we see two graphs on six
vertices. On the left, the graph contains a triangle and on
the right, the complement graph contains a triangle. We
can now reformulate the above claim.

E C

D

A

F B

E C

D

A

F B

Figure 24: The two cases we consider in the party problem.

PARTY THEOREM. If a simple graph on six vertices
does not have a triangle then the complement graph on
the same six vertices has a triangle.

PROOF. We distinguish the case in whichA knows two
or fewer people from the case in whichA knows three or
more people. For the first case, we assume thatA possibly
knowsC andE but nobody else. IfA knows both andC
andE know each other, then we have a triangle. Other-
wise, considerB, D, F . If they do not all mutually know
each other, then without loss of generality, we can say that

B does not knowD. Thus, we have a triangle in the com-
plement graph sinceA, B, andD mutually do not know
each other. For the second case, assume thatA knowsB,
D, F , and possibly other people. If any two of the three
know each other then we have a triangle in the graph. Oth-
erwise, we have a triangle in the complement graph since
B, D, andF mutually do not know each other.

Simple graphs. In the above problem, we used graphs to
help us find the solution. A(simple) graph, G = (V, E),
is a finite set of vertices,V , together with a set of edges,
E, where an edge is an unordered pair of vertices. Two
vertices connected by an edge areadjacentand they are
neighborsof each other. Furthermore, we say the edge is
incidentto the vertices it connects. Sometimes we refer to
the vertices as nodes and the edges as arcs. For example,
Figure 25 shows thecomplete graphof five vertices, which
we denote asK5. This graph is complete since we cannot
add any more edges. Asubgraphof a graphG = (V, E) is

Figure 25: The complete graph of five vertices. It has
`

5

2

´

= 10
edges.

a graphH = (W, F) for which W ⊆ V andF ⊆ E. For
example, aclique in G is a subgraph that is a complete
graph if considered by itself. With this terminology, the
Party Theorem says that a graph on six vertices contains a
clique of three vertices or its complement graph contains
such a clique.

Connectivity. Suppose we have a graph where the nodes
are cities and an edge{a, b} exists if there is a train that
goes between these two cities. Where can you go if you
start at a cityx? We need some definitions to study this
question. Awalk is an alternating sequence of vertices
and edges such that

1. the sequence starts and ends with a vertex;

2. each edge connects the vertex that precedes the edge
with the vertex that succeeds the edge.

55

Furthermore, apath is a walk such that no vertex appears
twice. If there exists a walk froma to b, then we know
that there also exists a path froma to b. Indeed, if a vertex
x appears twice, we can shorten the walk by removing all
edges and vertices between the two copies as well as one
copy of the vertexx. If the walk is finite, we get a path
after finitely many operations as described.

CLAIM . Having a connecting path is an equivalence re-
lation on the vertices of a graph.

PROOF. Let a, b, c be three vertices of a graphG. The
relation is reflexive because(a) is a path froma to a. The
relation is symmetric because reversing a path froma to b
gives a path fromb to a. Finally, the relation is transitive
because concatenating a path froma to b with a path from
b to c gives a path froma to c.

A graph isconnectedif there is a path between every
pair of its vertices. Aconnected componentof a not neces-
sarily connected graph is a maximal connected subgraph.
Equivalently, a connected component is an equivalence
class of vertices together with the edges between them.

Cycles and trees. A closed walkis a walk that starts and
ends at the same vertex. Acycleis a closed walk in which
no vertices are repeated. Alternatively, we can say that a
cycle is a path in which the start and the end vertices are
the same. Atree is a connected graph that does not have
any cycles.

PROPERTIES OFTREES. If T = (V, E) is a tree withn
vertices andm edges, then we have the following proper-
ties:

1. there is exactly one path between every pair of ver-
tices;

2. removing an edge disconnects the tree;

3. the number of edges ism = n − 1;

4. there exists at least one vertex that has precisely one
neighboring vertex.

Spanning trees. Sometimes the whole graph gives us
more information than we need or can process. In such a
case, we may reduce the graph while preserving the prop-
erty of interest. For example, if we are interested in con-
nectivity, we may remove as many edges as we can while
preserving the connectivity of the graph. This leads to the
concept of aspanning tree, that is, a subgraph that con-
tains all vertices and is itself a tree.

SPANNING TREE THEOREM. Every finite connected
graph contains a spanning tree.

PROOF. If there is a cycle in the graph, remove one edge
of the cycle. Repeat until no cycles remain.

There are a number of different algorithms for con-
structing a spanning tree. We may, for example, begin
with a vertexu0 ∈ V and grow a tree by adding an edge
and a vertex in each round. This is called Prim’s Algo-
rithm.

W = {u0}; F = ∅; X = V − {u0};
while ∃ edge{w, x} with w ∈ W andx ∈ X do

movex from X to W ; add{w, x} to F
endwhile;
if V = W then (W, F) is spanning tree

else (V, E) is not connected
endif.

At the end of this algorithm, we have determined ifG is
connected. If it is connected, we have found a spanning
tree. Otherwise,(W, F) is a spanning tree of the con-
nected component that containsu0.

Rooted trees. In many situations, it is convenient to
have the edges of a tree directed, from one endpoint to the
other. If we have an edge froma to b, we calla aparentof
b andb a child of a. A particularly important such struc-
ture is obtained if the edges are directed such that each
vertex has at most one parent. In a tree, the number of
edges is one less than the number of vertices. This implies
that each vertex has exactly one parent, except for one, the
root, which has no parent. Holding the root and letting
gravity work on the rest of the graph, we get a picture like
in Figure 26 in which the root is drawn at the top. The

Figure 26: The top vertex is the root and the square vertices are
the leaves of the rooted tree.

directions of the edges are now determined, namely from
top to bottom, leading away from the root. Each maximal
directed path starts at the root and ends at aleaf, that is,

56

a vertex without children. Rooted trees are often used to
model or to support a search process. We start at the root
and choose an outgoing edge to direct the search to one of
the available subtrees. We then recurse, treating the new
vertex like the root. Repeating this step, we eventually ar-
rive at a leaf of the rooted tree. Similarly, we can give a
recursive definition of a rooted tree. We phrase this defi-
nition of the case of abinary tree, that is, a rooted tree in
which every vertex has at most two children. We thus talk
about a left child and a right child.

• an empty graph is a binary tree;

• a vertex (the root) with a binary tree as left subtree
and a binary tree as right subtree is a binary tree.

While uncommon in Mathematics, recursive definitions
are suggestive of algorithms and thus common in Com-
puter Science.

Summary. Today, we looked at graphs, subgraphs,
trees, and rooted trees. We used Prim’s algorithm to find a
spanning tree (if one exists).

57

21 Tours

In this section, we study different ways to traverse a graph.
We begin with tours that traverse every edge exactly once
and end with tours that visit every vertex exactly once.

Bridges of Königsberg. The Pregel River goes through
the city of Königsberg, separating it into two large islands
and two pieces of mainland. There are seven bridges con-
necting the islands with the mainland, as sketched in Fig-
ure 27. Is it possible to find a closed walk that traverses

Figure 27: Left: schematic picture of the bridges connecting the
islands with the mainland in Königsberg. Right: representation
by a graph with four vertices and seven edges.

each bridge exactly once? We can formalize this question
by drawing a graph with four vertices, one for each island
and each piece of the mainland. We have an edge for each
bridge, as in Figure 27 on the right. The graph hasmulti-
edgesand is therefore not simple. More generally, we may
also allowloopsthat are edges starting and ending at the
same vertex. AEulerian tourof such a graph is a closed
walk that contains each edge exactly once.

Eulerian graphs. A graph isEulerianif it permits a Eu-
lerian tour. To decide whether or not a graph is Eulerian, it
suffices to look at the local neighborhood of each vertex.
The degreeof a vertex is the number of incident edges.
Here we count a loop twice because it touches a vertex at
both ends.

EULERIAN TOUR THEOREM. A graph is Eulerian iff it
is connected and every vertex has even degree.

PROOF. If a graph is Eulerian then it is connected and each
vertex has even degree just because we enter a vertex the
same number of times we leave it. The other direction is
more difficult to prove. We do it constructively. Given a
vertexu0 ∈ V , we construct a maximal walk,W0, that
leaves each vertex at a yet unused edge. Starting atu0, the

walk continues until we have no more edge to leave the last
vertex. Since each vertex has even degree, this last vertex
can only beu0. The walkW0 is thus necessarily closed.
If it is not a Eulerian tour then there are still some unused
edges left. Consider a connected component of the graph
consisting of these unused edges and the incident vertices.
It is connected and every vertex has even degree. Letu1 be
a vertex of this component that also lies onW0. Construct
a closed walk,W1, starting fromu1. Now concatenateW0

andW1 to form a longer closed walk. Repeating this step
a finite number of times gives a Eulerian tour.

All four vertices of the graph modeling the seven
bridges in Königsberg have odd degree. It follows there
is no closed walk that traverses each bridge exactly once.

Hamiltonian graphs. Consider thepentagon dodecahe-
dron, the Platonic solid bounded by twelve faces, each a
regular pentagon. Drawing the corners as vertices and the
sides of the pentagons as edges, we get a graph as in Fig-
ure 28. Recall that a cycle in a graph is a closed walk

Figure 28: A drawing of a pentagon dodecahedron in which the
lengths of the edges are not in scale.

in which no vertex is repeated. AHamiltonian cycleis a
closed walk that visits every vertex exactly once. As indi-
cated by the shading of some edges in Figure 28, the graph
of the pentagon dodecahedron has a Hamiltonian cycle. A
graph isHamiltonian if it permits a Hamiltonian cycle.
Deciding whether or not a graph is Hamiltonian turns out
to be much more difficult than deciding whether or not it
is Eulerian.

58

A sufficient condition. The more edges we have, the
more likely it is to find a Hamiltonian cycle. It turns out
that beyond some number of edges incident to each vertex,
there is always a Hamiltonian cycle.

DIRAC’ S THEOREM. If G is a simple graph withn ≥ 3
vertices and each vertex has degree at leastn

2 thenG is
Hamiltonian.

PROOF. AssumeG has a maximal set of edges without
being Hamiltonian. Lettingx andy be two vertices not
adjacent inG, we thus have a path fromx to y that passes
through all vertices of the graph. We index the vertices
along this path, withu1 = x andun = y, as in Figure
29. Now supposex is adjacent to a vertexui+1. If y is

−1nx u u u u y2 i i+1

... ...

Figure 29: Ifx is adjacent toui+1 andy is adjacent toui then
we get a Hamiltonian cycle by adding these two edges to the path
and removing the edge connectingui to ui+1.

adjacent toui then we have a Hamiltonian cycle as shown
in Figure 29. Thus, for every neighborui+1 of x, we have
a non-neighborui of y. But x has at leastn2 neighbors
which implies thaty has at leastn2 non-neighbors. The
degree ofy is therefore at most(n−1)− n

2 = n
2 −1. This

contradicts the assumption and thus implies the claim.

The proof of Dirac’s Theorem uses a common tech-
nique, namely assuming an extreme counterexample and
deriving a contradiction from this assumption.

Summary. We have learned about Eulerian graphs
which have closed walks traversing each edge exactly
once. Such graphs are easily recognized, simply by check-
ing the degree of all the vertices. We have also learned
about Hamiltonian graphs which have closed walks visit-
ing each vertex exactly once. Such graphs are difficult to
recognize. More specifically, there is no known algorithm
that can decide whether a graph ofn vertices is Hamilto-
nian in time that is at most polynomial inn.

59

22 Matching

Most of us are familiar with the difficult problem of find-
ing a good match. We use graphs to study the problem
from a global perspective.

Marriage problem. Suppose there aren boys andn
girls and we have a like-dislike relation between them.
Representing this data in a square matrix, as in Figure 30
on the left, we write an ‘x’ whenever the corresponding
boy and girl like each other. Alternatively, we may repre-
sent the data in form of a graph in which we draw an edge
for each ‘x’ in the matrix; see Figure 30 on the right. This
graph,G = (V, E), is bipartite, that is, we can partition
the vertex set asV = X ∪̇ Y such that each edge connects
a vertex inX with a vertex inY . The setsX andY are
thepartsof the graph.

... ...

3

1

2

−1n

n

1 2 3 n−1 n

boys

girls girlsboys

x x

x

x

x

x

Figure 30: The matrix on the left and the bipartite graph on the
right both represent the same data.

The goal is to marry off the boys and girls based on the
relation. We formalize this using the bipartite graph rep-
resentation. Amatchingis a setM ⊆ E of vertex-disjoint
edges. The matching ismaximalif no matching properly
containsM . The matching ismaximumif no matching has
more edges thanM . Note that every maximum matching
is maximal but not the other way round. Maximal match-
ings are easy to find, eg. by greedily adding one edge at
a time. To construct a maximum matching efficiently, we
need to know more about the structure of matchings.

Augmenting paths. LetG = (V, E) be a bipartite graph
with partsX andY andM ⊆ E a matching. Analter-
nating pathalternates between edges inM and edges in
E − M . An augmenting pathis an alternating path that
begins and ends at unmatched vertices, that is, at vertices

that are not incident to edges inM . If we have an aug-
menting path, we can switch its edges to increase the size
of the matching, as in Figure 31.

t

s

Figure 31: The solid edges form a matching. The shaded edges
form an augmenting path. Trading its dashed for its solid edges,
we increase the size of the matching by one edge. If we adds and
t and direct the edges, the augmenting path becomes a directed
path connectings to t.

BERGE’ S THEOREM. The matchingM is maximum iff
there is no augmenting path.

PROOF. Clearly, if there is an augmenting path thenM is
not maximum. Equivalently, ifM is maximum then there
is no augmenting path. Proving the other direction is more
difficult. SupposeM is not maximum. Then there exists a
matchingN with |N | > |M |. We consider the symmetric
difference obtained by removing the duplicate edges from
their union,

M ⊕ N = (M ∪ N) − (M ∩ N).

Since both sets are matchings, the edges ofM are vertex-
disjoint and so are the edges ofN . It follows that each
connected component of the graph(V, M⊕N) is either an
alternating path or an alternating cycle. Every alternating
cycle has the same number of edges fromM and fromN .
SinceN has more edges thanM , it also contributes more
edges to the symmetric difference. Hence, at least one
component has more edges fromN than fromM . This is
an augmenting path.

Constructing a maximum matching. Berge’s Theorem
suggests we construct a maximum matching iteratively.
Starting with the empty matching,M = ∅, we find an aug-
menting path and increase the size of the matching in each
iteration until no further increase is possible. The number
of iterations is less than the number of vertices. To explain

60

how we find an augmenting path, we add verticess andt
to the graph, connectings to all unmatched vertices inX
andt to all unmatched vertices inY . Furthermore, we di-
rect all edges: froms to X , from X to Y if the edge is in
E−M , fromY to X if the edge is inM , and fromY to t;
see Figure 31. An augmenting path starts and ends with an
edge inE−M . Prepending an edge froms and appending
an edge tot, we get a directed path froms to t in the di-
rected graph. Such a path can be found with breadth-first
search, which works by storing active vertices in a queue
and marking vertices that have already been visited. Ini-
tially, s is the only marked vertex and the only vertex in
the queue. In each iteration, we remove the last vertex,x,
from the end of the queue, mark all unmarked successors
of x, and add these at the front to the queue. We halt the
algorithm whent is added to the queue. If this never hap-
pens then there is no augmenting path and the matching
is maximum. Otherwise, we extract a path froms to t by
tracing it from the other direction, starting att, adding one
marked vertex at a time.

The breadth-first search algorithm takes constant time
per edge. The number of edges is less thann2, where
n = |V |. It follows that an augmenting path can be found
in time O(n2). The overall algorithms takes timeO(n3)
to construct a maximum matching.

Vertex covers. Running the algorithm to completion,
we get a maximum matching,M ⊆ E. Let Y0 contain
all vertices inY reachable froms andX0 all vertices inX
from which t is reachable; see Figure 32. No edge inM

t

s

XX0 1

Y0

Figure 32: Schematic picture of the vertex setD consisting of
the shaded portions ofX and ofY . The vertices are ordered so
that all edges inM are vertical.

connects a vertex inX0 with a vertex inY0, else we would
have an augmenting path. Furthermore,|X0 ∪ Y0| ≤ |M |
because each vertex in the union is incident to an edge in
the matching. LettingX1 contain the endpoints of the yet
untouched edges inM , we setD = X0 ∪ Y0 ∪ X1 and

note that|D| = |M |. Furthermore, we observe thatD
coversall edges inE, that is, each edge has at least one
endpoint inD.

We generalize this concept. Given a graphG = (V, E),
a vertex coveris a setC ⊆ V such that each edge inE
has at least one endpoint inC. It is minimal if it does
not properly contain another vertex cover andminimum
if there is no vertex cover with fewer vertices. Finding a
minimal vertex cover is easy, eg. by greedily removing one
vertex at a time, but finding a minimum vertex cover is a
difficult computational problem for which no polynomial-
time algorithm is known. However, ifG is bipartite, we
can use the maximum matching algorithm to construct a
minimum vertex cover.

K ÖNIG’ S THEOREM. If G = (V, E) is bipartite then
the size of a minimum vertex cover is equal to the size of
a maximum matching.

PROOF. Let X andY be the parts of the graph,C ⊆ V =
X ∪̇ Y a minimum vertex cover, andM ⊆ E a maximum
matching. Then|M | ≤ |C| becauseC coversM . Since
M is maximum, there is no augmenting path. It follows
that the setD ⊆ V (as defined above) covers all edges.
SinceC is minimum, we have|C| ≤ |D| = |M |, which
implies the claim.

Neighborhood sizes. If the two parts of the bipartite
graph have the same size it is sometimes possible to match
every last vertex. We call a matchingperfect if |M | =
|X | = |Y |. There is an interesting relationship between
the existence of a perfect matching and the number of
neighbors a set of vertices has. LetS ⊆ X and define
its neighborhoodas the setN(S) ⊆ Y consisting of all
vertices adjacent to at least one vertex inS.

HALL ’ S THEOREM. In a bipartite graphG = (V, E)
with equally large partsX andY , there is a perfect match-
ing iff |N(S)| ≥ |S| for everyS ⊆ X .

PROOF. If all vertices ofX can be matched then|N(S)| ≥
|S| simply becauseN(S) contains all matched vertices in
Y , and possibly more. The other direction is more difficult
to prove. We show that|N(S)| ≥ |S| for all S ⊆ X
implies thatX is a minimum vertex cover. By König’s
Theorem, there is a matching of the same size, and this
matching necessarily connects to all vertices inX .

Let nowC ⊆ X ∪̇ Y be a minimum vertex cover and
considerS = X − C. By definition of vertex cover, all

61

neighbors of vertices inS are in Y ∩ C. Hence,|S| ≤
|N(S)| ≤ |Y ∩ C|. We therefore have

|C| = |C ∩ X | + |C ∩ Y |
≥ |C ∩ X | + |S|
= |C ∩ X | + |X − C|

which is equal to|X |. But X clearly covers all edges,
which implies|C| = |X |. Hence,X is a minimum vertex
cover, which implies the claim.

Summary. Today, we have defined the marriage prob-
lem as constructing a maximum matching in a bipartite
graph. We have seen that such a matching can be con-
structed in time cubic in the number of vertices. We have
also seen connections between maximum matchings, min-
imum vertex covers, and sizes of neighborhoods.

62

23 Planar Graphs

Although we commonly draw a graph in the plane, us-
ing tiny circles for the vertices and curves for the edges, a
graph is a perfectly abstract concept. We now talk about
constraints on graphs necessary to be able to draw a graph
in the plane without crossings between the curves. This
question forms a bridge between the abstract and the geo-
metric study of graphs.

Drawings and embeddings. Let G = (V, E) be a
simple, undirected graph and letR2 denote the two-
dimensional real plane. Adrawing maps every vertex
u ∈ V to a pointε(u) in R2, and it maps every edge
uv ∈ E to a curve with endpointsε(u) andε(v); see Fig-
ure 33. The drawing is anembeddingif

1. vertices are mapped to distinct points;

2. edge are mapped to curves without self-intersections;

3. a curve does not pass through a point, unless the cor-
responding edge and vertex are incident, in which
case the point is an endpoint of the curve;

4. two curves are disjoint, unless the corresponding
edges are incident to a common vertex, in which case
the curves share a common endpoint.

Not every graph can be drawn without crossings between
the curves. The graphG is planar if it has an embedding
in the plane.

Figure 33: Three drawings ofK4. From left to right a drawing
that is not an embedding, an embedding with one curved edge,
and a straight-line embedding.

Euler’s Formula. Think of the plane as an infinite piece
of paper which you cut along the curves with a pair of scis-
sors. Each piece of the paper that remains connected after
the cutting is called afaceof the embedding. We write
n = |V |, m = |E|, andℓ for the number of faces. Euler’s
Formula is a linear relation between the three numbers.

EULER’ S FORMULA . For an embedding of a connected
graph we haven − m + ℓ = 2.

PROOF. Choose a spanning tree(V, T) of (V, E). It has
n vertices,|T | = n − 1 edges, and one face. We have
n − (n − 1) + 1 = 2, which proves the formula ifG
is a tree. Otherwise, draw the remaining edges, one at a
time. Each edge decomposes one face into two. The num-
ber of vertices does not change,m increases by one, andℓ
increases by one. Since the graph satisfies the claimed lin-
ear relation before drawing the edge it satisfies the relation
also after drawing the edge.

We get bounds on the number of edges and faces, in
terms of the number of vertices, by consideringmaximally
connectedgraphs for which adding any other edge would
violate planarity. Every face of a maximally connected
planar graph with three or more vertices is necessarily a
triangle, for if there is a face with more than three edges
we can add an edge without crossing any other edge. Let
n ≥ 3 be the number of vertices, as before. Since every
face has three edges and every edge belong to two trian-
gles, we have3ℓ = 2m. We use this relation to rewrite
Euler’s Formula:n − m + 2m

3 = 2 andn − 3ℓ
2 + ℓ = 2

and thereforem = 3n − 6 andℓ = 2n − 4. Every planar
graph can be completed to a maximally connected planar
graph, which implies that it has at most these numbers of
edges and faces.

Note that the sum of vertex degrees is twice the number
of edges, and therefore

∑

u deg(u) ≤ 6n − 12. It fol-
lows that every planar graph has a vertex of degree less
than six. We will see uses of this observation in coloring
planar graphs and in proving that they have straight-line
embeddings.

Non-planarity. We can use the consequences of Euler’s
Formula to prove that the complete graph of five vertices
and the complete bipartite graph of three plus three ver-
tices are not planar. Consider firstK5, which is drawn in
Figure 34, left. It hasn = 5 vertices andm = 10 edges,

Figure 34:K5 on the left andK3,3 on the right.

contradicting the upper bound of at most3n−6 = 9 edges
for maximally connected planar graphs. Consider second
K3,3, which is drawn in Figure 34, right. It hasn = 6
vertices andm = 9 edges. Each cycle has even length,

63

which implies that each face has four or more edges. We
get 4ℓ ≤ 2m andm ≤ 2n − 4 = 8 after plugging the
inequality into Euler’s Formula, again a contradiction.

In a sense,K5 and K3,3 are the quintessential non-
planar graphs. Two graphs arehomeomorphicif one can
be obtained from the other by a sequence of operations,
each deleting a degree-2 vertex and merging its two edges
into one or doing the inverse.

KURATOWSKI’ S THEOREM. A graphG is planar iff no
subgraph ofG is homeomorphic toK5 or to K3,3.

The proof of this result is a bit lengthy and omitted. We
now turn to two applications of the structural properties of
planar graphs we have learned.

Vertex coloring. A vertexk-coloring is a mapχ : V →
{1, 2, . . . , k} such thatχ(u) 6= χ(v) wheneveru andv are
adjacent. We callχ(u) thecolor of the vertexu. For pla-
nar graphs, the concept is motivated by coloring countries
in a geographic map. We model the problem by replacing
each country by a vertex and by drawing an edge between
the vertices of neighboring countries. A famous result is
that every planar graph has a4-coloring, but proving this
fills the pages of a thick book. Instead, we give a con-
structive argument for the weaker result that every planar
graph has a5-coloring. If the graph has five or fewer ver-
tices then we color them directly. Else we perform the
following four steps:

Step 1. Remove a vertexu ∈ V with degreek =
deg(u) ≤ 5, together with thek incident edges.

Step 2. If k = 5 then find two neighborsv andw of
the removed vertexu that are not adjacent and merge
them into a single vertex.

Step 3. Recursively construct a5-coloring of the
smaller graph.

Step 4. Add u back into the graph and assign a color
that is different from the colors of its neighbors.

Why do we know that verticesv andw in Step 2 exist? To
see that five colors suffice, we just need to observe that the
at most five neighbors ofu use up at most four colors. The
idea of removing a small-degree vertex, recursing for the
remainder, and adding the vertex back is generally useful.
We show that it can also be used to construct embeddings
with straight edges.

Convexity and star-convexity. We call a regionS in the
planeconvexif for all points x, y ∈ S the line segment
with endpointsx andy is contained inS. Figure 35 shows
examples of regions of either kind. We callS star-convex

x

y

z

Figure 35: A convex region on the left and a non-convex star-
convex region on the right.

if there is a pointz ∈ S such that for every pointx ∈ S the
line segment connectingx with z is contained inS. The
set of such pointsz is thekernelof S.

It is not too difficult to show that every pentagon is star-
convex: decompose the pentagon using two diagonals and
choosez close to the common endpoint of these diago-
nals, as shown in Figure 36. Note however that not every
hexagon is star-convex.

z

Figure 36: A (necessarily) star-convex pentagon and two non-
star-convex hexagons.

Straight-line embedding. A straight-line embedding
maps every (abstract) edge to the straight line segment
connecting the images of its two vertices. We prove that
every planar graph has a straight-line embedding using the
fact that it has a vertex of degree at most five. To sim-
plify the construction, we assume that the planar graph
G is maximally connected and we fix the ‘outer’ triangle
abc. Furthermore, we observe that ifG has at least four
vertices then it has a vertex of degree at most5 that is dif-
ferent froma, b andc. Indeed, the combined degree of
a, b, c is at least7. The combined degree of the othern−3
vertices is therefore at most6n − 19, which implies the
average is still less than6, as required.

Step 1. Remove a vertexu ∈ V − {a, b, c} with de-
greek = deg(u) ≤ 5, together with thek incident

64

edges. Addk−3 edges to make the graph maximally
connected again.

Step 2. Recursively construct a straight-line embed-
ding of the smaller graph.

Step 3. Remove the addedk − 3 edges and mapu to
a pointε(u) inside the kernel of thek-gon. Connect
ε(u) with line segments to the vertices of thek-gon.

Figure 37 illustrates the recursive construction. It would
be fairly straightforward to turn the construction into a re-
cursive algorithm, but the numerical quality of the embed-
dings it gives is not great.

c

a

u

add back u

remove u

recurse

b

Figure 37: We fix the outer triangleabc, remove the degree-5
vertexu, recursively construct a straight-line embedding of the
rest, and finally add the vertex back.

65

Sixth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is 22 April 2009.

Question 1. (20 = 5 + 5 + 5 + 5 points). Choose ten of
your friends, and make a graph where the edges rep-
resent two friends being Facebook friends. (Do not
include yourself in the graph). Order your friends al-
phabetically, and label the verticesv1, v2, . . . , v10 re-
spectively. This will be most interesting if all of your
friends know each other. Now, answer the following
questions about the graph that you drew.

(a) What is the size of the largest clique?

(b) Find the shortest and longest paths fromv1 to
v10.

(c) Which vertex has the highest degree?

(d) Use Prim’s algorithm to find the minimum
spanning tree, and draw that tree.

Question 2. (20 points). (Problem 6.1-14 in our text-
book). Are there graphs withn vertices andn − 1
edges and no cycles that are not trees? Give a proof
to justify your answer.

Question 3. (20 points). Call a simple graph withn ≥ 3
vertices anOre graphif every pair of non-adjacent
vertices has a combined degree of at leastn. Is it true
that every Ore graph is Hamiltonian? Justify your
answer.

Question 4. (20 = 10+10 points). (Problems 6.4-12 and
13 in our textbook). Prove or give a counterexample:

(a) Every tree is a bipartite graph.

(b) A bipartite graph has no odd cycles.

Question 5. (20 = 5 + 15 points). Suppose you haven
pennies which you arrange flat on a table, without
overlap.

(a) How would you arrange the pennies to max-
imize the number of pennies that touch each
other?

(b) Prove that the number of touching pairs cannot
exceed3n.

66

