CPS 102

DISCRETE MATHEMATICS
FOR COMPUTER SCIENCE

Spring 2009

Co-instructorsHerbert Edelsbrunner andBrittany Fasy

CPS 102

N

~NOo oA

Introduction
COUNTING

Sets and Lists

Binomial Coefficients
Equivalence Relations
Homework Assignments

NUMBER THEORY

Modular Arithmetic
Inverses

Euclid’s Algorithm

RSA Cryptosystem
Homework Assignments

L oGic

Boolean Algebra
Quantifiers

Inference

Homework Assignments

Table of Contents

10
12

13

14
16
18
20
22

23

24

27

29
31

Vi

11
12
13
14

15
16
17
18
19

20
21
22
23

Spring Semester of 2009

I NDUCTION 32
Mathematical Induction 33
Recursion 35
Growth Rates 37
Solving Recurrence Relations 39
Homework Assignments 41
PROBABILITY 42
Inclusion-Exclusion 43
Conditional Probability 45
Random Variables a7
Probability in Hashing 49
Probability Distributions 51
Homework Assignments 53
GRAPHS 54
Trees 55
Tours 58
Matching 60
Planar Graphs 63

Homework Assignments 66

Introduction

Meetings. We meet twice a week for lectures, on Mon-
day and on Wednesday, from 2:50 to 4:05pm, in room
D243 LSRC. We also have a recitation each week on Fri-
day, same time and room as the lectures.

Communication. The course material will be delivered
in the two weekly lectures. A written record of the lec-
tures will be available on the web, usually a day after the
lecture. The web also contains other information, such as
homework assignments, solutions, useful links, etc. The
main supporting text is

BOGART, STEIN, DRYSDALE. Discrete Mathematics for
Computer ScienceKey College Publishing, Emeryville, Cali-
fornia, 2006.

Examinations. There will be a final exam (covering the
material of the entire semester) and two midterm. The
weighting of participation, exams, and homework used to
determine your grades is

class participation 10%,
homework 30%,
midterms 30%,
final 30%.

Homework. We have six homeworks scheduled
throughout this semester, one per main topic covered in

Overview. Discrete mathematics provides concepts that
are fundamental to computer science but also other dis-
ciplines. This course emphasizes the computer science
connection through the selection and motivation of topics,
which are grouped in six major themes:

| Counting;
Il
1
Y,
\Y,
VI

Number Theory;
Logic;

Induction;
Probability;
Graphs.

the course. The solutions to each homework are due one

and a half weeks after the assignment. More precisely,
they are due at the beginning of the third lecture after the
assignment. The sixth homework may help you prepare
for the final exam and solutions will not be collected.

RULE 1. The solution to any one homework question
must fit on a single page (together with the statement
of the problem).

RULE 2. Thediscussion of questions and solutions before
the due date is not discouraged, but you must formu-
late your own solution.

RULE 3. The deadline for turning in solutions is 10 min-
utes after the beginning of the lecture on the due date.

| COUNTING

Counting things is a central problem in Discrete Mathensatidnce we can count, we can determine the likelihood of a
particular even and we can estimate how long a computeritiigotakes to complete a task.

1 Sets and Lists

Binomial Coefficients

3 Equivalence Relations
Homework Assignments

N

1 Sets and Lists

Sets and lists are fundamental concepts that arise in var-
ious contexts, including computer algorithms. We study
basic counting problems in terms of these concepts.

Sorting. A common computational task is to rearrange
elements in order. Given a linear arrdyl..n] of integers,
rearrange them such thdfi] < A[i + 1] for1 <i < n.

fori=1ton—1do

for j=i+1downto2do
if Alj] > Alj —1]then
auz = Aljl; Alj] = A[j — 1]; Alj] = auz
endi f

endf or

endf or.

We wish to count the number of comparisons made in this
algorithm. For example, sorting an array of five elements
usesl5 comparisons. In general, we make- 2 + - - - +

(n-1)=x"

—1 . .
i~ i comparisons.

Sums. We now derive a closed form for the above sum
by adding it to itself. Arranging the second sum in reverse
order and adding the terms in pairs, we get

M+n-1)]+...4[(n-1)+1]

Since each number of the original sum is added twice, we
divide by two to obtain

Yoot

As with many mathemat|cal proofs, this is not the only
way to derive this sum. We can think of the sum as two

n(n —

n—l)

Figure 1: The number of squares in the grid is twice the sum

from1to8.

Sets. A setis an unordered collection of distinct ele-
ments. Theunion of two sets is the set of elements that
are in one set or the other, thatid,u B = {z | = €
Aorz € B}. Theintersectionof the same two sets is the
set of elements that are in both, that 50 B = {z |

x € Aandz € B}. We say thatd and B are disjoint if
AN B = (). Thedifferenceis the set of elements that be-
long to the first but not to the second set, thatds; B =

{z | = € Aandz ¢ B}. Thesymmetric differences the
set of elements that belong to exactly one of the two sets,
thatis,A®@B = (A—B)U(B—A) = (AUB)—(ANB).
Look at Figure 2 for a visual description of the sets that

R Slel

Figure 2: From left to right: the union, the intersectiore tfif-

sets of stairs that stack together, as in Figure 1. At the,base ference, and the symmetric difference of two sets represiss

we haven — 1 gray blocks and one white block. At each
level, one more block changes from gray to white, until
we have one gray block and— 1 white blocks. Together,
the stairs form a rectangle divided into- 1 by n squares,
with exactly half the squares gray and the other half white.

Thus,>" i = M1 same as before. Notice that this
sum can appear in other forms, for example,
n—1
i = 14+2+...+(n-1)
=1
= n-1D+mn-2)+...+1
n—1
= Z(n —1)
1=1

disks in the plane.

result from the four types of operations. The number of
elements in a sefl is denoted a$A|. It is referred to as
the sizeor thecardinality of A. The number of elements
in the union of two sets cannot be larger than the sum of
the two sizes.

SuMm PRINCIPLE 1. |A U B < |A] 4 |B| with equality
if A andB are disjoint.

To generalize this observation to more than two sets, we
call the setsSy, Ss, ..., S,, acoveringof S = S; U Sy U
. US,. IfS;nS; = 0forall i # j, then the covering

is called apartition. To simplify the notation, we write
U;ZlSi:Sl USoU---US,,.

SuM PRINCIPLE 2. Let Sy, 5,...,.5,, be a covering
of S. Then,|S| < >, |S;|, with equality if the cov-
ering is a partition.

Matrix multiplication. Another common computa-
tional task is the multiplication of two matrices. As-
suming the first matrix is stored in a two-dimensional
array A[l..p,1..q] and the second matrix is stored in
BJ1..q,1..r], we match up rows ofd with the columns
of B and form the sum of products of corresponding ele-
ments. For example, multiplying

- 1
_ [!

3

A 2

with

—_
[\
ot

results in

11 8 20
18 4 14

c - | |

The algorithm we use to gét from A andB is described
in the following pseudo-code.

fori=1topdo
for j=1tordo
Cli, j] = 0;
for k=1toqdo
endf or
endf or
endf or.

We are interested in counting how many multiplications
the algorithm takes. In the example, each entry of the re-
sult uses three multiplications. Since there are six entrie
in C, there are a total of - 3 = 18 multiplications. In
general, there are multiplications for each opr entries

of the result. Thus, there aggr multiplications in total.
We state this observation in terms of sets.

PRODUCT PRINCIPLE 1. LetS = [J!", S;. If the sets
S1,82,...,5, form a partition andS;| = n for each
1 <i < mthen|S| = nm.

We can also encode each multiplication by a triplet of inte-
gers, the row number id, the column number ial which

is also the row number if, and the column number iR.
There arep possibilities for the first numbeg,for the sec-
ond, and- for the third number. We generalize this method
as follows.

PRODUCTPRINCIPLE 2. If S is a set of lists of length
m with ¢; possibilities for positiory, for 1 < j < m, then
S| =1 dg - im =[]y 45

We can use this rule to count the number of cartoon char-
acters that can be created from a book giving choices for
head, body, and feet. If there gsehoices for the head,
choices for the body, andchoices for the legs, then there
arepqr different cartoon characters we can create.

Number of passwords. We apply these principles to
count the passwords that satisfy some conditions. Sup-
pose a valid password consists of eight characters, each
a digit or a letter, and there must be at least two digits.
To count the number of valid passwords, we first count the
number of eight character passwords without the digit con-
straint: (26+10)® = 368. Now, we subtract the number of
passwords that fail to meet the digit constraint, namely the
passwords with one or no digit. There &€ passwords
without any digits. To count the passwords with exactly
one digit, we note that there a6” ways to choose an
ordered set of letters,10 ways to choose one digit, ad
places to put the digit in the list of letters. Thereforeythe
are267 - 10 - 8 passwords with only one digit. Thus, there
are36% — 268 — 267 - 10 - 8 valid passwords.

Lists. A list is an ordered collection of elements which
are not necessarily different from each other. We note two
differences between lists and sets:

(1) alistis ordered, but a set is not;
(2) alist can have repeated elements, but a set can not.

Lists can be expressed in terms of another mathematical
concept in which we map elements of one set to elements
of another set. Aunctionf from adomainD to arange

R, denoted ag : D — R, associates exactly one element
in R to each element € D. A list of k£ elements is a
function{1,2,...,k} — R. For example, the function in
Figure 3 corresponds to the listd, ¢, b, 2, 1, 3, 3. We can

use the Product Principle 2 to count the number of differ-
ent functions from a finite domair, to a finite rangeR.

a
b
c
d
1
2
3
z

Figure 3: A function representing a list.

Specifically, we have a list of lengttD| with |R| possi-
bilities for each position. Hence, the number of different
functions fromD to Riis | R|I”!.

Bijections. The functionf : D — R isinjectiveor one-
to-oneif f(x) # f(y) forall = # y. Itis surjectiveor
ontoif for every r € R, there exists some € D with
f(z) = r. The function ishijectiveor aone-to-one corre-
spondencd it is both injective and surjective.

BIJECTION PRINCIPLE. Two setsD and R have the
same size if and only if there exists a bijectipn D — R.

Thus, asking how many bijections there are frénto R

only makes sense if they have the same size. Suppose this
size is finite, that is|D| = |R| = n. Then being injective

is the same as being bijective. To count the number of
bijections, we assign elements Bfto elements ofD, in
sequence. We hawve choices for the first element in the
domain,n — 1 choices for the second,— 2 for the third,

and so on. Hence the number of different bijections from
DtoRisn-(n—1)-...-1=nl

Summary. Today, we began with the building blocks of
counting: sets and lists. We went through some examples
using the sum and product principles: counting the num-
ber of times a loop is executed, the number of possible
passwords, and the number of combinations. Finally, we
talked about functions and bijections.

2 Binomial Coefficients

In this section, we focus on counting the number of ways
sets and lists can be chosen from a given set.

Permutations. A permutatioris a bijection from a finite
setDtoitself, f : D — D. Forexample, the permutations
of {1,2,3} are: 123,132,213,231,312, and321. Here

we list the permutations in lexicographic order, same as
they would appear in a dictionary. AssuminB| = k,
there are:! permutations or, equivalently, orderings of the
set. To see this, we note that there &rehoices for the
first element/ — 1 choices for the second,— 2 for the
third, and so on. The total number of choices is therefore
k(k—1)-...-1, which is the definition ok!.

Let N = {1,2,...,n}. Fork < n, ak-element per-
mutationis an injection{1,2,...,k} — N. In other
words, ak-element permutation is a list @f distinct el-
ements fromV. For example, th8-element permutations
of {1,2,3,4} are

123, 124, 132, 134, 142, 143,
213, 214, 231, 234, 241, 243,
312, 314, 321, 324, 341, 342,
412, 413, 421, 423, 431, 432

There are24 permutations in this list. There are six or-
derings of the subseftl, 2,3} in this list. In fact, each
3-element subset occurs six times. In general, we wiite
for the number of-element permutations of a set of size
n. We have
k—1
| §)
=0
nn—1)---(n—(k—=1))

n!

(n— k)

Subsets. The binomial coefficient(}), pronouncedn
choosek, is by definition the number of-element sub-
sets of a size: set. Since there are ways to order a set
of sizek, we know that:® = (}') - k! which implies

) = ormm

We fill out the following tables with values c(f;‘) where
the row index is the values of and the column index is
the value ofk. Values of(}) for k > n are all zero and
are omitted from the table.

4

abrwNEFO
PR RRPRPRPPRO
arwWN -

(@R e) RO RN
ohEF

1
10 10 5 1

By studying this table, we notice several patterns.

° (3) = 1. Inwords, there is exactly one way to choose

no item from a list ofn items.
° (Z) = 1. Inwords, there is exactly one way to choose
all n items from a list ofn items.
n
(nfk)'

This table is also known as Pascal’s Triangle. If we draw
it symmetric between left and right then we see that each
entry in the triangle is the sum of the two entries above it
in the previous row.

e Each row is symmetric, that i§})

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Pascal’s Relation. We express the above recipe of con-
structing an entry as the sum of two previous entries more
formally. For convenience, we defir(g) = 0 whenever
k<0,n<0,0rn <k.

PascAL's RELATION. (V) = (771) + ("2 1)

PROOFE We give two arguments for this identity. The first
works by algebraic manipulations. We get

<:) (n—k)(n — 1) + k(n — 1)!

(n — k)!E!
(n—1)! (n—1)!
(n—Fk—1%" " (n—Fk)!(k-1)

n—1 n—1
(") Go)
For the second argument, we partition the sets.|Bét=
n and leta be an arbitrary but fixed element frof1 (7)
counts the number df-element subsets &. To get the
number of subsets that contain we count thelk — 1)-

element subsets ¢f — {a}, and to get the number of sub-
sets that do not contain we count thek-element subsets

3 2

of S — {a}. The formeris(}_;) and the latter ig",). COROLLARY 3. Y7 | i2 =12 + -+
Since the subsets that contaiare different from the sub-

sets that do not contaim, we can use the Sum Principle PRooF We first express the summands in terms of bino-
1 to get the number ok-element subsets &f equal to mial coefficients and then use Corollary 2 to get the result.
(=) + ("1, as required.

o3

n

Y2 = 2Zn:2 2_2+zn:z

Binomials. We use binomial coefficients to find a for- i=1 i=1

i=1
mula for(z + y)™. First, let us look at an example. "/ "/
: - 220) % 0)
(z+y)” = (z+y)(z+y) i—1 i=1
= xx+yr+ay+yy _ n+1)+<n+1)
= 2% 422y + 9> N 3 2
Notice that the coefficients in the last line are the same _ 2ntDn(n—1) + (n+ Ln
as in the second line of Pascal’s Triangle. This is more . 1.2 32 1-2
generally the case and known as the _ n-on ni+4n
3 2
BINOMIAL THEOREM. (z +y)" = Y21, (7)2""y". This implies the claimed identity.
PROOF If we write each term of the result before combin-
ing like terms, we list every possible way to selecter® summary. The binomial coefficient”), counts the dif-
oney from each factor. Thus, the coefficientof 'y’ is ferent ways we can choogeelements from a set of. We

equalto(,”,) = (?) In words, it is the number of ways saw how it can be used to compuite+ y)". We proved
we can select — i factors to ber and have the remaining several corollaries and saw that describing the identities

i factors to bey. This is equivalent to selectingactorsto a5 counting problems can lead us to different, sometimes
bey and have the remaining factors be simpler proofs.

Corollaries. The Binomial Theorem can be used to de-
rive a number of other interesting sums. We prove three
such consequences.

CoroLLARY 1. 37 (%) =2".

PROOF Letz = y = 1. Then, by the Binomial Theorem

we have
n _ - n n—iqt
(1+1)" = g(l)l 1%,
This implies the claimed identity.

CoroLLARY 2. 37, (1) = (35)).
PROOFE We use Pascal’s Relation to prove this identity. It
is instructive to trace our steps graphically, in the tri@ng
above. In a first step, we repla¢g’}) by () and(,’,).
Keeping the first term, we replace the secofyd,,), by

(".1) and (7). Repeating this operation, we finally re-

k1
place(; 1) by (}) = 1and(,%,) = 0. In other words,
(7f1) is equal to the sum of thg/) for j running fromn
down tok.

3 Equivalence Relations

Equivalence relations are a way to partition a set into sub-
sets of equivalent elements. Being equivalent is then in-

Equivalence relations. We now formalize the above
method of counting. Arelation on a setS is a collec-
tion R of ordered pairs(z, y). We writez: ~ y if the pair
(z,y) isin R. We say that a relation is

terpreted as being the same, such as different views of the

same object or different ordering of the same elements,
etc. By counting the equivalence classes, we are able to
count the items in the set that are different in an essential

way.

Labeling. To begin, we ask how many ways are there
to label three of five elements red and the remaining two
elements blue? Without loss of generality, we can call
ourelementsi, B, C, D, E. Alabeling is an function that

e reflexivelf x ~ x forall z € S,
e symmetridf = ~ y impliesy ~ x;
e transitiveif x ~ y andy ~ z imply z ~ z.

We say that the relation is aquivalence relatiofif R is
reflexive, symmetric, and transitive. $f is a set and? an
equivalence relation of, then theequivalence classf an
elementr € S'is

(]

lye S|y~ x}.

associates a color to each element. Suppose we look at _
a permutation of the five elements and agree to color the We note here that i: ~ y then[z] = [y]. In the above
first three red and the last two blue. Then the permutation labeling exampley5 is the set of permutations of the ele-

ABDCE would correspond to coloring, B, D red and
C, E blue. However, we get the same labeling with other
permutations, namely

ABD;CE BAD;CE DAB;CE
ABD;EC BAD;EC DAB;EC
ADB;CE BDA;CE DBA;CE
ADB;EC BDA;EC DBA;EC.

Indeed, we have3!2! 12 permutations that give the
same labeling, simply because there arevays to or-
der the red elements arid ways to order the blue ele-
ments. Similarly, every other labeling correspondd 20
permutations. In total, we hav@ = 120 permutations
of five elements. The set d20 permutations can thus be
partitioned into% = 10 blocks such that any two per-
mutations in the same block give the same labeling. Any
two permutations from different blocks give different la-
belings, which implies that the number of different label-
ings is10. More generally, the number of ways we can
label & of n elements red and the remaining— & ele-
ments blue ISW = (}). This is also the number of
k-element subsets of a setioklements.

Now suppose we have three labels, red, green, and blue.

We count the number of different labelings by dividing
the total number of orderings by the orderings within in
the color classes. There ang permutations of the, el-
ements. We want elements red; elements blue, and

k = n — 1 — j elements green. We agree that a permuta-
tion corresponding to the labeling we get by coloring the
firsti elements red, the nextelements blue, and the ldst

mentsA, B, C, D, E and two permutations are equivalent
if they give the same labeling. Recalling that we color the
first three elements red and the last two blue, the equiva-
lence classes afel\ BC'; DE|, [ABD; CE), [ABE; CD],
[ACD; BE), [ACE;BD)], [ADE;BC), [BCD;AE],
[BCE; AD], |[BDE; AC], [CDE; AB].

Not all relations are equivalence relations. Indeed, there
are relations that have none of the above three properties.
There are also relations that satisfy any subset of the three
properties but none of the rest.

An example: modular arithmetic. We say an integer
is congruento another integer modulo a positive integer
n, denoted ag = b mod n, if b — a is an integer multiple
of n. To illustrate this definition, let = 3 and letS be the
set of integers fronf to 11. Thenz = y mod 3 if 2 and
y both belong taS, = {0, 3, 6,9} or both belong to5; =
{1,4,7,10} or both belong toS> = {2,5,8,11}. This
can be easily verified by testing each pair. Congruence
modulo3 is in fact an equivalence relation ¢ To see
this, we show that congruence modadleatisfies the three
required properties.

reflexive. Sincex —x = 0-3, we know thatr = x mod 3.

symmetric.If x = y mod 3 thenz andy belong to the
same subsed;. Hencey = x mod 3.

transitive. Let x = y mod 3 andy = z mod 3. Hencex
andy belong to the same subsgt and so da; and
z. It follows thatx andz belong to the same subset.

elements green. The number of repeated labelings is thusMore generally, congruence modulois an equivalence

! timesj! timesk! and we have;% different labelings.

10

relation on the integers.

Block decomposition. An equivalence class of elements For example, leh = 3. Then, we have + ¢ + r = k.
is sometimes called Block The importance of equiva- The choices fop are from0 to k. Oncep is chosen, the
lence relations is based on the fact that the blocks partitio choices forg are fewer, namely from to & — p. Finally,
the set. if p andg are chosen then is determined, namely =
k — p — gq. The number of ways to writé as a sum of

THEOREM. Let R be an equivalence relation on some (1ré€ non-negative integers is therefore

setS. Then the blocks, = {y € S |z ~ y,y € S} for v ki X
all x € S partitionS. 1 = E—p+1
,,;q; ,,;(p+1)
PROOF. In order to prove thatJ, S, = S, we need to ft1
show two things, namely), .S, C S and{J,cg 5= 2 _ Zp
S. EachS, is a subset of which implies the first inclu- e
sion. Furthermore, each € S belongs toS, which im- k42
plies the second inclusion. Additionally,$f, # S,, then = <)
Sz NS, = 0 sincez € S, impliesz ~ z, which means 2
thatS, = S., which means tha$. 7 5,. Thereforez is There is another (simpler) way of finding this solution.
not related tay, and saz ¢ S, Suppose we line up our books, then placg — 1 dividers

Symmetrically, a partition of defines an equivalence between them. The number of books betweeni itreand
relation. If the blocks are all of the same size then it is the (i — 1)-st dividers is equal to the number of books on
easy to count them. thei-th shelf; see Figure 4. We thus hawet & — 1 ob-

jects,k books plus: — 1 dividers. The number of ways to

QUOTIENT PRINCIPLE. If a setS of sizep can be parti-

tioned intoq classes of size each, themp = ¢r or, equiv-
alently,q = . 6' I I

Multisets. The difference between a set andnaltiset
is that the latter may contain the same element multiple
times. In other words, a multiset is an unordered collec- Figure 4: The above arrangement of books and blocks repsesen

tion of elements, possibly with repetitions. We can list the two books placed on the first and last shelves, and one book on
' the second shelf. As a sum, this figure representsl + 0 + 2.

repetitions,
{(e, 0.4 0,7)) choosen — 1 dividers fromn + k — 1 objects is(" "7 ").
or we can specify the multiplicities, We can easily see that this formula agrees with the result

we found forn = 3.
m(c) =1,m(o) = 2,m(r) = 1.

Thesizeof a multiset is the sum of the multiplicities. We Summary. We defined relations and equivalence rela-
show how to count multisets by considering an example, tions, investigating several examples of both. In partic-

the ways to distributé (identical) books among (differ- ular, modular arithmetic creates equivalence classesof th
ent) shelves. The number of ways is equal to integers. Finally, we looked at multisets, and saw that
counting the number of size-multisets ofn elements is
e the number of sizé- multisets of the: shelves; equal to the number of ways to writeas a sum ofi non-
e the number of ways to writé¢ as a sum of:. non- negative integers.

negative integers.

We count the ways to writé as a sum of non-negative
integers as follows. Choose the first integer of the sum
to bep. Now we have reduced the problem to counting
the ways to writek — p as the sum of — 1 non-negative
integers. For small values af we can do this.

11

First Homework Assignment

Write the solution to each question on a single page. The
deadline for handing in solutions is January 26.

Question 1. (20 = 10 + 10 points). Ifn basketball teams
play each other team exactly once, how many games
will be played in total? If the teams then compete
in a single elimination tournament (similar to March
Madness), how many additional games are played?

Question 2. (20 = 10 + 10 points).

(a) (Problem 1.2-7 in our textbook). LéD| =
|R| = n. Show that the following statement
is true: The functiory : D — R is surjective if
and only if f is injective.

(b) Is the functionf : R — R defined byf(z) =
3z + 2 a bijection? Prove or give a counterex-
ample.

Question 3. (20 = 6 + 7 + 7 points).
(@) What is the coefficient of the® term of (z —
2)302
(b) What is the coefficient of the’y’ z* term of
(x+y+2)"?
(c) Showthat(}) = (,",).

Question 4. (20 = 6+7+7 points). For (a) and (b), prove
or disprove that the relations given are equivalence
relations. For (c), be sure to justify your answer.

(a) Choose somé € Z. Letx,y € Z. We say
x~yif z =y mod k.

(b) Letx,y be positive integers. We say ~ y if
the greatest common factorefandy is greater
thanl.

(c) How many ways can you distributeidentical
cookies ton children?

12

I NUMBER THEORY

We use the need to send secret messages as the motivationlyagsiestions in number theory. The main tool for this
purpose is modular integer arithmetic.

Modular Arithmetic
Inverses

Euclid’s Algorithm

RSA Cryptosystem
Homework Assignments

~N o oA~

13

4 Modular Arithmetic sound contradictory since everybody knaiRg andS 4 is
just its inverse, but it turns out that there are pairs of func

We begin the chapter on number theory by introducing tions that satisfy this requirement. Now, if Alice wants to
modular integer arithmetic. One of its uses is in the en- S€Nd a message to Bob, she proceeds as follows:
cryption of secret messages. In this section, all numbers

are integers. 1. Alice gets Bob’s public keyP’s.

2. Alice applies it to encrypt her message= Pg(z).

Private key cryptography. The problem of sending se- 3. Alice sendgy to Bob, publically.

cret messages is perhaps as old as humanity or older. We 4. Bob appliesSy(y) = Sp(Pp(z)) = .

have asendemwho attempts to encrypt a message in such a .

way that the intendextceiveris able to decipher itbutany ~ We note that Alice does not need to know Bob's secret
possibleadversaryis not. Following the traditional proto- K€Y to encrypt her message and she does not need secret
col, the sender and receiver agree on a secret code ahea@hannels to transmit her encrypted message.

of time, and they use it to both encrypt and decipher the

message. The weakness of the method is the secret codey rithmetic modulo .

i We begin by defining what it
which may be stolen or cracked.

means to take one integer, modulo another integen,
As an example, consid&leasar’s cipherwhich con-
sists of shifting the alphabet by some fixed number of po- DEFINITION. Lettingn < 1, m mod n is the smallest

sitions, e.g., integerr > 0 such thatn = nq + r for some integey.
A B C ... VW XY Z Givenm andn > 1, it is not difficult to see that; and
R 2 T A A r exist. Indeedn partitions the integers into intervals of
F F G ... Z A B C D. |engthn:

If we encode the letters as integers, this is the same as ey =Ny, 0,00 0 0, 20,

adding a fixed integer but then subtract2g the number
of letters, if the sum exceeds this number. We consider
this kind of integer arithmetic more generally.

The numbern lies in exactly one of these intervals. More
precisely, there is an integersuch thayn < m < ((¢ +
1)n. The integer is the amount by whicln exceedgn,
thatis,r = m — gn. We see thag andr are unique, which
Public key cryptography. Today, we use more power- is known as

ful encryption methods that give a more flexible way to

transmit secret information. We call thigiblic key cryp- EucLID’s DIvISION THEOREM. Lettingn > 1, for
tographywhich roughly works as follows. As before, we everym there are unique integegsand0 < r < n such
have a sender, called Alice, and a receiver, called Bob. thatm = ng + r.

Both Alice and Bob have aublic key K P4 and K P,

which they publish for everyone to see, andexret key) _
K S andK S, which is only known to themselves. They Computations. It is useful to know that modulos can
do not exchange the secret key even among each otherP€ taken anywhere in the calculation if it involves only
The keys are used to change messages so we can think ofddition and multiplication. We state this more formally.
them as functions. The function that corresponds to the _ . .
public and the secret keys are inverses of each other, that LEMMA 1. Lettingn > 1,4 mod n = (i+ kn) mod n.
is, . . .

This should be obvious because addintimesn moves

Sa(Pa(x)) = Pa(Sa(z)) = the integeri to the right byk intervals but maintains its
Sp(Ps(z)) = Pg(Sp(x) = a relative position within the interval.
The crucial point is thaP, is easy to compute for every- LEMMA 2. Lettingn > 1, we have
body andS 4 is easy to compute for Alice but difficult for S . .)
everybody else, including Bob. Symmetricallyj is easy (i +3) modn = (z_ mod 1) + Q mod n) mod n;
for everybody butS is easy only for Bob. Perhaps this (i-j)modn = (imodn)-(jmodn)modn.

14

PrRoOF By Euclid’s Division Theorem, there are unique
integersy;, ¢; and0 < r;,r; < n such that

’L’ =

j =

@n +ri;
qin +r;.

Plugging this into the left hand side of the first equation,
we get

(i+j)modn = (¢ +gj)n+ (ri+r;)modn
= (ri+r;) modn
= (i mod n) + (j mod n) mod n.
Similarly, it is easy to show that(ij) mod n

(r;rj) mod n, which implies the second equation.

Algebraic structures. Before we continue, we intro-
duce some notation. L&, = {0,1,...,n— 1} and write
+, for addition modulon. More formally, we have an
operation that maps two numbeiss Z,, andj € Z,, to
their sum;i+,,j = (i+7j) mod n. This operation satisfies
the following four properties:

e itis associativethatis,(i+,7)+nk = i+, (j+n k)
foralli,j, k € Zy;

e 0 € Z, is theneutral elementthat is,0 +,, i = ¢ for

alieZ,;

e everyi € Z, has annverse element, that is,i +,,
i’ =0;

e it is commutativethat is,i +, j = j +, ¢ for all
i,j € L.

The first three are the defining property ofjeoup, and if
the fourth property is also satisfied we haveoamutative
or Abelian group Thus,(Z,,+,) is an Abelian group.
We have another operation mappingnd; to their prod-
uct,i -, 7 = (ij) mod n. This operation has a similar list
of properties:

e itis associativethat is,(i -, j) -nk =i, (j - k) for

alli,j, k € Zy;

e 1 € Z, is theneutral elementthat is,1 -,, i« = 7 for
alli e Z,;

e itis commutativethatis,i-, j = j-,iforalli,j €
Loy,

e multiplication distributesover addition, that isj -,
(J4nk)=(inj)+n(ink)forali jkeZ,.

These are the eight defining properties afanmutative
ring. Had we also a multiplicative inverse for every non-
zero element then the structure would be callefie&l.
Hence(Z,,, +, -») is a commutative ring. We will see in
the next section that it is a fieldf is a prime number.

Addition and multiplication modulo »n. We may be
tempted to use modular arithmetic for the purpose of trans-
mitting secret messages. As a first step, the message is in-
terpreted as an integer, possibly a very long integer. For
example, we may write each letter in ASCII and read the
bit pattern as a number. Then we concatenate the numbers.
Now suppose Alice and Bob agree on two integers; 1

anda, and they exchange messages using

P(x)
S(y)

This works fine but not as a public key cryptography sys-
tem. Knowing thatP is the same as addirngmodulon,

it is easy to determine its inversg, Alternatively, let us
use multiplication instead of addition,

T+, a;

Y +n (—a)

Y —na.

P(z)
S(y)

T p a5

Y-n (_a) = Yina.

The trouble now is that division module is not as
straightforward an operation as for integers. Indeed, if
n = 12anda = 4, we have0 -4 =3-4 =6-4 =
9-4 = 0 mod n. Since multiplication with4 is not in-
jective, the inverse operation is not well defined. Indeed,
0 :,, 4 could be0, 3, 6, or 9.

Summary. We learned about private and public key
cryptography, ways to to send a secret message from a
sender to a receiver. We also made first steps into number
theory, introducing modulo arithmetic and Euclid’s Divi-
sion Theorem. We have seem that addition and multiplica-
tion modulon are both commutative and associative, and
that multiplication distributes over addition, same asrin o
dinary integer arithmetic.

Under some circumstances, we also have inverse elements

but not in general. HenceZ,,-,) is generally not a
group. Considering the interaction of the two operations,
we note that

15

5 Inverses

the rightand get’,, (a-,a’) = a”-,, (a-,a’) and therefore
a’ = a”. If a has a multiplicative inverse, we can use it to

In this section, we study under which conditions there is a S°lve a linear equation. Multiplying with the inverse from

multiplicative inverse in modular arithmetic. Specifigall
we consider the following four statements.

I. The integer has a multiplicative inverse if,, .
[I. The linear equatiom -, z = b has a solution itZ,,.

Ill. The linear equatiomz +ny = 1 has a solution in the

integers.

IV. The integers: andn are relative prime.

We will see that all four statements are equivalent, and

we will prove all necessary implications to establish this,
except for one, which we will prove in the next section.

Examples. Before starting the proofs, we compute mul-
tiplicative inverses for a few values afanda; see Table
1. Except fora = 0, all values ofa have multiplicative in-

n=2|a 0o 1
a’ 1
n=3 | a o 1 2
a’ 1 2
n=4 | a o 1 2 3
a’ 1 3
n=51|a o 1 2 3 4
a’ 1 2 3 4
n=6|a 0O 1 2 3 4 5
a’ 1 5
n=71|a 0O 1 2 3 4 5 6
a’ 1 4 5 2 3 6
n=8 | a o 1 2 3 4 5 6 7
a’ 1 3 5 7
n=9 | a o 1 2 3 4 5 6 7 8
a’ 1 5 7 2 4 8

Table 1: Values of: for which a has a multiplicative inverse'.
Black entries indicate the inverse does not exist.

versesifn = 2,3,5, 7butnotifn = 4,6, 8,9. Inthe latter
case, we have multiplicative inverses for some values of
but not for all. We will later find out that the characterizing
condition for the existence of the multiplicative inverse i
thatn anda have no non-trivial common divisor.

Linear equations modulon. Here we prove k= II.
Themultiplicative inversef an integer € Z,, is another
integera’ € Z, such thate’ -, a = a -, o’ = 1. We
note that the multiplicative inverse is unique, if it exists
Indeed, ifa” -,, a = 1 then we can multiply withz’ from

16

the left and using associativity, we get

anxr = b
/ . / b
(@ na)nper = d b
xr = a0

Since the multiplicative inverse is unique, so is the solu-
tionz = o' -, b to the linear equation. We thus proved a
little bit more than |— Il, namely also the uniqueness

of the solution.

A. If a has a multiplicative inverse’ in Z,, then for
everyb € Z,, the equatioru -, z = b has the unique
solutionz = a’ -,, b.

Every implication has an equivalent contrapositive form.
For a statement4=- |l this form is—Il = —I. We state
the contrapositive form in this particular instance.

A'. If a-, x = bhas no solution ir%,, thena does not
have a multiplicative inverse.

To prove A we just need to assume that it is false, that is,
that—ll and | both hold. But if we have | then we also have
II. Now we have-ll as well as II. But this is a contradic-
tion with they cannot both be true. What we have seen
here is a very simple version of a proof by contradiction.
More complicated versions will follow later.

By settingb = 1, we getz = o/ as a solution to
a-,x = 1. Inotherwordsg’ -, a =a -, a’ = 1. Hence,
Il = I. This particuar implication is called the converse
of | = Il, which should not be confused with the contra-
positive. The converse is a new, different statement, while
the contrapositive is logically egivalent to the originaki
plication, no matter what the specifics of the implication
are.

Linear equations in two variables. Here we prove
Il < Illl. Recall thata -, x 1 is equivalent to
ax mod n = 1. Writing az = gn+r with 0 < r < n, we
see thatz mod n = 1 is equivalent to the existence of an
integerqg such thatur = gn + 1. Writing y = —q we get

ar+ny = 1.

All steps in the above derivation are reversible. Hence, we
proved that Il is equivalent to Ill. We state the specific
result.

B. The equatiom -, x = b has a solution itZ,, iff there
exist integers: andy such thatr + ny = 1.

Implications are transitive, that is, if | implies Il and I

implies Il then | implies Ill. We can do the same chain
of implications in the other direction as well. Hence, if
| < Il and Il < lll, as we have established above, we
also have k= lll. We again state this specific result for
clarity.

C. The integer has a multiplicative inverse i, iff
there exist integers andy such thauz + ny = 1.

Greatest common divisors. Here we prove lll= IV.
We will prove IV = Ill later. We say an integerfactors
another integey if j/i is an integer. Furthermorg, is
a prime numbeiif its only factors aret+j and+1. The
greatest common divisaf two integersj andk, denoted
asged(y, k), is the largest integet that is a factor of both.
We sayj andk andrelative primeif ged(j, k) = 1.

D. Given integers andn, if there exist integers and
y such thatuz + ny = 1 thenged(a, n) = 1.

PROOF Supposecd(a,n) = k. Then we can writes =
ik andn = jk. Substituting these into the linear equation
gives
1 = ar+ny
= k(iz + jy).
But thenk is a factor ofl and thereforét = +1. This

implies that the only common factors afandn are+1
and thereforgcd(a,n) = 1.

Summary. We have proved relationships between the
statements |, 11, lll, IV; see Figure 5. We will see later that

Figure 5: Equivalences between statements.

the implication proved by D can also be reversed. Thus
computing the greatest common divisor gives a test for the
existence of a multiplicative inverse.

17

6 Euclid’s Algorithm that after a finite number of iterations the algorithm halts
with » = 0. In other words, the algorithm terminates after

In this section, we present Euclid’s algorithm for the great & finite number of steps, which is something one should
est common divisor of two integers. An extended version always check, in particular for recursive algorithms.
of this algorithm will furnish the one implication that is

missing in Figure 5. Last implication. We modify the algorithm so it also

returns the integersandy for whichged(j, k) = jx+ky.

Reduction. An important insight is Euclid’s Division 1his provides the missing implication in Figure 5.
Theorem stated in Section 4. We use it to prove a relation-

ship between the greatest common divisors of numpers D’. If gcd(a, n) = 1thenthe linear equationz +ny =
andk when we replacé by its remainder modulg. 1 has a solution.

LEMMA. Let j.k.q.r > O with k = jq + r. Then This flnall_y yenﬁes_that the.gcd is a test forthe_emstence
oL ! of a multiplicative inverse in modular arithmetic. More
ged(g, k) = ged(r, j). - . e O .
specifically,z mod n is the multiplicative inverse ofi in
Z,,. Do you see why? We can thus update the relationship
between the statements I, 11, I, 1V listed at the beginning
of Section 5; see Figure 6.

PROOFE We begin by showing that every common factor
of j andk is also a factor of-. Lettingd = ged(j, k) and
writing j = Jd andk = Kd, we get

ro= k—jq = (K- Jg)d OB
We see that- can be written as a multiple of, sod is N b, b
indeed a factor of. Next, we show that every common A @ <= @
factor ofr andj is also a factor ok. Lettingd = ged(r, j) /7
and writingr = Rd andj = Jd, we get B

®

Figure 6: Equivalences between the statements listed dtethe
ginning of Section 5.

k = jg+r = (Jg+ R)d.

Henced is indeed a factor of. But this implies thatl is
a common factor of and# iff it is a common factor of-
andj.

. . Extended gcd algorithm. If » = 0 then the above algo-
Euclid's gcd algorithm. We use the Lemma to compute ithm returns; as the ged. In the extended algorithm, we

the greatest common divisor of positive integgmnd k. also returnz = 1 andy = 0. Now suppose > 0. In this
The algorithm is recursive and reduces the integers until case, we recurse and get
the remainder vanishes. It is convenient to assume that
both integers; andk, are positive and that < k. ged(r,j) = ra' 45y

. GCD(. k) = (k—joz' +jy’

I nt eger j YA / /

}) = —qx) + ka'.

g=k div j, r=k—jq Iy =)

ifr=0thenreturny We thus returry = ged(r, j) as wellast = y' — ¢z’ and
el sereturn GCD(r,j) y = 2. As before, we assunme < j < k when we call

endi f. the algorithm.

If we call the algorithm forj > £ then the first recursive i nt eger® XxGCD(j, k)

call is for k andy, that is, it reverses the order of the two g=Fk div j;, r=k—jq

integers and keeps them ordered as assumed from then on. ifr=0thenreturn(j,1,0)

Note also that- < j. In words, the first parametey, el se (g,2',y") = xGCD(r, j);

shrinks in each iterations. There are only a finite num- return(g,y —qa’,2')

ber of non-negative integers smaller thawhich implies endi f .

18

To illustrate the algorithm, we run it foj = 14 and to different pairs of remainders. The generalization of thi
k = 24. The values ofj, k,q,r,g = ged(j, k), z,y at insight to relative prime numbers andn is known as the
the various levels of recursion are given in Table 2.

151 2]1| (i 16| g ;g y3 CHINESE REMAINDER THEOREM. Let m,n > 0 be
10 141 al2 '3 > relative prime. Then for every € Z,, andb € Z,, the
) system of two linear equations
4 1002 2|2 2 1 y inear equat
2 412 0|12 1 o0 zmodm = a
Table 2: Running the extended gcd algorithmjor= 14 and zmodn = b

k=24) o
has a unique solution iA,,,,,.

o)) There is a further generalization to more then two moduli
Computing inverses. We have established that the inte- {hat are pairwise relative prime. The proof of this theorem

gera has a multiplicative inverse ifi,, iff ged(a,n) = 1. works as suggested by the example, namely by showing
Assumingn = p is a prime number, this is the case when- that f : Zywm — Zm X Zn, defined by

evera < p is positive.
f(x) = (z modm,z modn)
COROLLARY. If pis prime then every non-zeroc Z,

has a multiplicative inverse is injective. Since bot#.,,,,, andZ,, x Z,, have sizenn,

this implies thatf is a bijection. Hencga, b) € Z,,, X Z,,

It is straightforward to compute the multiplicative invers has a unique preimage, the solution of the two equations.

using the extended gcd algorithm. As before, we assume To use this result, we would take two large integers,

pis a prime numberand < a < p. andy, and represent them as paifs,mod m, x mod n)
and (x mod m,z mod n). Arithmetic operations can
i nt eger INVERSEa, p) then be done on the remainders. For exampléimes
(9,,y) = XGCD(a, p); y would be represented by the pair
assert g=1; returnx mod p.
zymodm = [(x mod m)(y mod m)] mod m;
The assert statement makes sure thandp are indeed zymodn = [(zmod n)(y mod n)] mod n.

relative prime, for else the multiplicative inverse would ,
not exist. We have seen thatcan be negative so it is V& would choosen andn small enough so that multi-

necessary to take modulop before we report it as the plying two remainders can be done using conventional,
multiplicative inverse single-word integer multiplication.

Multiple moduli. Sometimes, we deal with large inte- Summary. We discussed El_“?"d,s algorl_thm for com-
gers, larger then the ones that fit into a single computer PUting the greatestcommon divisor of two integers, and its
word (usually32 or 64 bits). In this situation, we have to €Xtended version which provides the missing implication
find a representation that spreads the integer over several Figure 5. We have also learned the Chinese Remainder
words. For example, we may represent an integhy its .Theor.em v_vhlch can be used to decompose large integers
remainders moduld and modulds, as shown in Table 3. Nt digestible junks.

We see that the first5 non-negative integers correspond

T || 0O 1 2 3 4 13 14 15
zmod3| 0 1 2 0 1 ... 1 2 0
zmodb5| 0 1 2 3 4 3 4 0

Table 3: Mapping the integers frodrto 15 to pairs of remainders
after dividing with3 and with5.

19

7 RSA Cryptosystem

Addition and multiplication modulo: do not offer the
computational difficulties needed to build a viable cryp-
tographic system. We will see that exponentiation modulo
n does.

Operations as functions. Recall that+,, and-, each
read two integers and return a third integer. If we fix one of
the two input integers, we get two functions. Specifically,
fixing « € Z,, we have functionsA : Z,, — Z, and
M : Z,, — Z, defined by

T+ a;

Ty @

see Table 4. ClearlyA is injective for every choice of

x |01 2 3 45
Az) |2 3 4 5 0 1
M) |0 2 4 0 2 4

Table 4: The functiom defined by adding = 2 modulon = 6
is injective. In contrast, the functioh/ defined by multiplying
with a = 2 is not injective.

n > 0anda € Z,. On the other hand)/ is injective
iff ged(a,n) = 1. In particular,M is injective for every
non-zerau € Z, if n is prime.

Exponentiation. Yet another function we may consider
is takinga to thez-th power. LetE : Z,, — 7Z,, be defined

by

E(z) a® mod n

= AQ'pQp...na,
where we multiplyx copies ofa together. We see in Table
5 that for some values af andn, the restriction ofE to

the non-zero integers is injective and for others it is not.

Perhaps surprisingly, the last column of Table 5 consists

of 1s only.

FERMAT'SLITTLE THEOREM. Let p be prime. Then
a?~! mod p = 1 for every non-zera € Z,.

PROOFE Sincep is prime, multiplication witha gives an
injective function for every non-zero € Z,. In other
words, multiplying witha permutes the non-zero integers

20

|10 1 2 3 4 5 6
11 1 1 1 1 1 1
211 2 4 1 2 4 1
3|1 3 2 6 4 5 1
411 4 2 1 4 2 1
5|1 5 4 6 2 3 1
6|(]1 6 1 6 1 6 1

Table 5: Exponentiation module = 7. We writez from left to
right anda from top to bottom.

in Z,. Hence,

X

Lp2p..p(p—1)
(Lpa)p(2pa)op...
X - (@® mod p).

p((P—1)pa)

Multiplying with the inverse ofX givesa,_; mod p = 1.

One-way functions. The RSA cryptosystemis based on
the existence obne-way functiong : Z,, — Z,, defined
by the following three properties:

e fis easyto compute;
e itsinverse,f~!:Z, — Z,, exists;
e without extra informationf—! is hard to compute.

The notions of ‘easy’ and ‘hard’ computation have to be
made precise, but this is beyond the scope of this course.
Roughly, it means that given computingy = f(x) takes

on the order of a few seconds while computifig! (y)
takes on the order of years. RSA uses the following recipe
to construct one-way functions:

1. choose large primesandgq, and letn. = pq;

2. choose: # 1 relative prime top — 1)(¢ — 1) and let
d be its multiplicative inverse module — 1)(¢—1);

3. the one-way functionis defined Byz) = ¢ mod n

and its inverse is defined yy) = y? mod n.

According to the RSA protocol, Bob publisheandn and
keepsd private. To exchange a secret message,Z,,,

4. Alice computeg = f(z) and publisheg;
5. Bob readg and computes = g(y).

To show that RSA is secure, we would need to prove
that without knowingp, ¢, d, it is hard to computg. We

leave this to future generations of computer scientists. In
deed, nobody today can prove that compugirggndg from

n = pq is hard, but then nobody knows how to factor large
integers efficiently either.

Correctness. To show that RSA works, we need to
prove that = z. In otherwordsg(y) = f~!(y) forevery
y € Z,. Recall thaty is computed ag () = 2° mod n.
We need;? mod n = z but we first prove a weaker result.

LEMMA. 3¢ mod p = 2 mod p for everyz € Z,.

PROOFE Sinced is the multiplicative inverse of modulo
(p—1)(g — 1), we can writeed = (p — 1)(¢ — 1)k + 1.
Hence,

y?’modp = 2 modp
FE=D=D+1 od p.

Suppose first that*(@=Y mod p # 0. Then Fermat’s
Little Theorem impliesz*®=1(¢=1) mod p = 1. But
this impliesy? mod p = z mod p, as claimed. Sup-
pose second that*(*~Y) mod p = 0. Sincep is prime,
every power of a non-zero integer is non-zero. Hence,
2 mod p = 0. But this impliesy? mod p = 0 and thus

y® mod p = x mod p, as before.

By symmetry, we also havg? mod ¢ = x mod gq.
Hence,

(y" —x)modp = 0;
d

(y*—z)modqg = 0.

By the Chinese Remainder Theorem, this system of two
linear equations has a unique solutiorZp, wheren =

pq. Sincey? — 2 = 0 is a solution, there can be no other.
Hence,

(y* —z)modn = 0.

The left hand side can be written &$y? mod n) —
x) mod n. This finally impliesy? mod n = =, as desired.

Summary. We talked about exponentiation moduto
and proved Fermat’s Little Theorem. We then described
how RSA uses exponentiation to construct one-way func-
tions, and we proved it correct. A proofthat RSA is secure
would be nice but is beyond what is currently known.

21

Second Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is February 6.

Question 1. (20 = 10 + 10 points). (Problem 2.1-12 in
our textbook). We recall that a prime numbgrthat
divides a product of integers divides one of the two
factors.

() Letl < a < p— 1. Use the above recollection
to show that a$ runs through the integers from
0top — 1, the products, -, b are all different.

(b) Explain why every positive integer less than
has a unique multiplicative inverse %),.

Question 2. (20 points). (Problem 2.2-19 in our text-
book). Theleast common multiplef two positive
integersi andyj, denoted asm(i, j), is the smallest
positive integerm such thatn/i andm/j are both
integer. Give a formula fotcm(i, j) that involves

ged(i,).

Question 3. (20 = 10 + 10 points). (Problem 2.2-17 in
our textbook). Recall the Fibonacci numbers defined
by Fp =0, Fy = 1,andF; = F;_1 + F;_» for all
i > 2.

(a) Run the extended gcd algorithm fpr=Fjq
andk = Fi1, showing the values of all param-
eters at all levels of the recursion.

(b) Running the extended gcd algorithm foe F;
andk = F; 1, how many recursive calls does it
take to get the result?

Question 4. (20 points). Letn > 1 be a nonprime
andx € Z, such thatgcd(xz,n) # 1. Prove that
2" ' mod n # 1.

22

Il L OGIC

It is now a good time to be more specific about the precise mgarfimathematical statements. They are governed by
the rules of logic.

oo

Boolean Algebra

9 Quantifiers

10 Inference

Homework Assignments

23

8 Boolean Algebra Boolean operations. A logical statement is either true
(T) of false F). We call this thetruth valueof the state-

Logic is generally considered to lie in the intersection be- Ment. We will frequently represent the statement by a

tween Philosophy and Mathematics. It studies the mean- Variablewhich can be either true or false. oolean oper-
ing of statements and the relationship between them. ationtakes one or more truth values as input and produces
a new output truth value. It thus functions very much like

an arithmetic operation. For exampteggationis a unary
Logical statements in computer programs. Program- operation. It maps a truth value to the opposite; see Ta-
ming languages provide all the tools to be excessively pre- ble 6. Much more common are binary operations; such as
cise. This includesogical statementsvhich are used to

construct loops, among other things. As an example, con- p | —p
sider a while loop that exchanges adjacent array elements TITF
until some condition expressed by a logical statement is FIl T
satisfied. Putting the while loop inside a for loop we get a
piece of code that sorts an arrayl..n]: Table 6: Truth table for negation{.
fori=1tondoj=71 and, or, and exclusive or. We use a truth table to specify
whilej>1and A[j] > A[j — 1] do the values for all possible combinations of inputs; see Ta-
a=A[jl; Alj] = Alj —1]; A[j —1] = ble 7. Binary operations have two input variables, each in
j=j—1 one of two states. The number of different inputs is there-
endwhi | e fore only four. We have seen the use of these particular
endf or.
p _q|lpralpVa|peq
This particular method for sorting is often referred to as T T T T F
insertion sort because after- 1 iterations,A[1..i — 1] is T F| F T T
sorted, and the-th iteration inserts thé-th element such IE —||:_ IE -||:— -||:—

that A[1..i] is sorted. We illustrate the algorithm in Figure

7. Here we focus on the logic that controls the while loop. Table 7: Truth table for andA), or (v), and exclusive or)

operations.

475 boolean operations before, namely in the definition of the
4 5 1 common set operations; see Figure 8.

X
S A = fa|agA)
1 4 5
145 7 ANB = {xz]xe€ A and z € B};
145 7 3 AUB = {x]xe€ A or x € B};
1 45 3°7 A®B = {z|xze€ A xor z¢€ B};
14 35 7 A-—B = {z|xz€ A and z ¢ B}.

X

Figure 7: The insertion sort algorithm applied to an unsbrte

sequence of five integers.

The iteration is executed as long as two conditions hold, Q
namely % > 1" and “A[j] > A[j — 1]". The first pre-

vents we step beyond the left end of the array. The second
condition limits the e?(changes to cases in which adjacent rigure 8: From left to right: the complement of one set and the
elements are not yetin non-decreasing order. The two con-intersection, union, symmetric difference, and diffemiof two
ditions are connected by a logical and, which requires both sets.

to be true.

24

Algebraic properties. We observe that boolean opera- p_allp=q|-q=-p|-pA-qg | pVg
tions behave very much like ordinary arithmetic opera- T T T T T T
tions. For example, they follow the same kind of rules T F F F F F
when we transform them. F T T T T T
F F T T T T
e All three binary operations are commutative, that is, o
Table 9: The truth table for the implicatior).
pAg iff gAp;
pVa iff qvp; defined in Table 9. We see the contrapositive in the second
pdq iff q@p. column on the right, which is equivalent, as expected. We

also note thag is forced to be true ip is true and thay
e The and operation distributes over the or operation, can be anything ip is false. This is expressed in the third

and vice versa, that is, column on the right, which relates to the last column by
de Morgan’s Law. The corresponding set operation is the
pA(gVvr) it (pAgQV(pAT) complement of the differencéA — B)¢; see Figure 9 on
pVi(gAr) iff (pvag)ApVr). the left.
Similarly, negation distributes over and and or, but it
changes one into the other as it does so. This is known
as de Morgan’s Law.

DE MORGAN'S LAw. Lettingp andq be two variables,

] Figure 9: Left: the complement of the difference between the
“(pAg) it —pViog two sets. Right: the complement of the symmetric difference

—(pVvq) iff —pA-g

] We recall that a logical statement is either true or false.
PROOF. We construct the truth table, with a row for each This is referred to as the law of thexcluded middle In
combination of truth values forandg; see Table 8. Since gther words, a statement is true precisely when it is not

false. There is no allowance for ambiguities or paradoxes.

p_all-prg) | »V g An example is the sometimes counter-intuitive definition
T T F F that false implies true is true. Writd for the statement
T F T T “it is raining”, B for “I use my umbrella”, and consider
FT T T A = B. Hence, if it is raining then | use my umbrella.
FF T T This does not preclude me from using the umbrella if it is

not raining. In other words, the implication is not false if

Table 8: The truth table for the expressions on the left aed th . . o
| use my umbrella without rain. Hence, it is true.

right of the first de Morgan Law.

the two relations are symmetric, we restrict our attention Equivalences. If implications go both ways, we have an
to the first. We see that the truth values of the two eXpreS- equiva'enceAn example is the existence of a mu|tip|ica_
sions are the same in each row, as required. tive inverse iff the multiplication permutes. We writefor

the statementd' has a multiplicative inverse i,,” and B

for “the functionM : Z,, — Z,, defined byM (z) = a-,
f is bijective”. There are different, equivalent ways to re-
state the claim, namelyA4'if and only if B” and “A and B
are equivalent”. The operation is defined in Table 10. The
last column shows that equivalence is the opposite of the
exclusive or operation. Figure 9 shows the corresponding
set operation on the right.

Implications. Theimplicationis another kind of binary
boolean operation. It frequently occurs in statements o
lemmas and theorems. An example is Fermat’s Little The-
orem. To emphasize the logical structure, we write
for the statements is prime” andB for “a™ ! mod n =

1 for every non-zera € Z,". There are different, equiv-
alent ways to restate the theorem, namelyAithen B”;
“AimpliesB"; “ Aonlyif B”;“ B if A”. The operation is Recalling the definition of a group, we may ask which

25

p qallred p=9rla=p | (a9
T T T T T
T F| F F F
F T| F F F
F F| T T T

Table 10: The truth table for the equivalenee);

of the binary operations form an Abelian group. The set is
{F, T}. One of the two must be the neutral element. If we
chooseF thenFoF =FandFo T = ToF = T. Further-
more, T o T = F is necessary fof to have an inverse. We
see that the answer is the exclusive or operation. Mapping
Fto0andT to 1, as itis commonly done in programming
languages, we see that the exclusive or can be interpreted
as adding modul@. Hence,({F, T}, ®) is isomorphc to

(Za, +2).

Summary. We have learned about the main components
of logical statements, boolean variables and operations.
We have seen that the operations are very similar to the
more familiar arithmetic operations, mapping one or more

boolean input variable to a boolean output variable.

26

9 Quantifiers The corresponding rules for quantified statements are

. : . . (Vo [p(z)]) & Tz [-p(@))];
Logical statements usually includariables which range ~ (@ [g2)]) o Ve [q@)]
over sets of possible instances, often referred toras '
verses We use quantifiers to specify that something holds We get the first line by applying de Morgan’s first Law
for all possible instances or for some but possibly not all to the conjunction that corresponds to the expression on
instances. the left hand side. Similarly, we get the second line by

applying de Morgan'’s second Law. Alternatively, we can

, , i .) derive the second line from the first. Since both sides of

Universal and existential quantifiers. We introduce e first line are equivalent, so are its negations. Now, all
the concept by taking an in-depth look at a result we have \ya need to do it to substitutey () for p(x) and exchange

discussed in Chapter |I. the two sides, which we can becauseis commutative.

EucLID’s DIVISION THEOREM. Letting n be a posi-
tive integer, for every integern there are unique integers
g andr, with 0 < r < n, such thatn = nq + r.

Big-Oh notation. We practice the manipulation of

qguantified statements by discussing the big-Oh notation
for functions. Itis commonly used in statements about the
convergence of an iteration or the running time of an algo-

In this statement, we have, as variables. The . . o
4T Y rithm. We writeR™ for the set of positive real numbers.

are integers, sé is the universe, except that some of the
variables are constrained further, thatris> 1 and0 <
r < n. The claim is “for all’ m “there exist”¢q andr.
These are quantifiers expressed in English language. Thel_
first is called theuniversal quantifier

DEFINITION. Let f andg be functions fronR™ to R+.
henf = O(yg) if there are positive constantsandn
such thatf (x) < cg(x) whenever: > ny.

Vz [p(z)]: for all instantiations of the variable, the Thjs notation is useful in comparing the asymptotic be-
statemenp(z) is true. havior of the functiong’ andg, that is, beyond a constant
. _ _ ~ no. If f=0(g) thenf can grow at most a constant times
For example, ifz varies over the integers then this is as fast ag. For example, we do not have = O(y) if

equivalent to f(z) = 2% andg(z) = z. Indeed,f(z) = zg(z) so there
is no constant such thatf(z) < cg(x) because we can
~ Ap(=1) Ap(0) Ap(1) Ap(2) A ... always choose larger thanc andng and get a contradic-

tion. We rewrite the definition in more formal notation.

The second is thexistential quantifier : .
a The statement = O(g) is equivalent to

Jz [q(x)]: there exists an instantiation of the variable Je>03ng >0z € R [z >ng = f(x) < cg(z)).

such that the statement) is true. We can simplify by absorbing the constraint ofbeing

. .) larger than the constant, into the last quantifying state-
For the integers, this is equivalent to 9 o q ying

ment:
- Va(=1)vg(0) va(l) Va2 V... Je>03ng > 0Ve > ng [f(x) < cg(x)].

With these quantifiers, we can restate Euclid’s Division We have seen above that negating a quantified statement

Theorem more formally: reverses all quantifiers and pulls the negation into the un-
quantified, inner statement. Recall thep = ¢) is equiv-

Yn > 1VYm 3¢30 <r < nlm=mnqg+r]. alent top A —¢q. Hence, the statemelfit~ O(g) is equiva-

lent to

Negating quantified statements. Recall de Morgan’s Ve>0Vno > 03z € R [x > ng A f(z) > cg(z)].

Law for negating a conjunction or a disjunction: We can again simplify by absorbing the constraintzon

into the quantifying statement:
~(prg) = PV g quantitying

~(pVq) & -pA-g Ve > 0Vng > 03z > ng [f(z) > cg(x)].

27

Big-Theta notation. Recall that the big-Oh notation is DEFINITION. Let f andg be functions fronR*™ to R™.
used to express that one function grows asymptotically Then f = o(g) if for all constantsc > 0 there exists a
at most as fast as another, allowing for a constant factor constantu, > 0 such thatf(z) < cg(x) wheneverz >

of difference. The big-Theta notation is stronger and ex- ng. Furthermoref = w(g) if g = o(f).

presses that two functions grow asymptotically at the same

speed, again allowing for a constant difference. This is not equivalent tof = O(g) and f # Q(g).
The reason for this is the existence of functions that can-
not be compared at all. Consider for examgle:) =
z?(cosz + 1). Forz = 2km, k a non-negative integer,
we havef(r) = 222, while forz = (2k + 1)7, we
have f(z) = 0. Letg(x) = z. For even multiples of
m, f grows much fast thag, while for odd multiples of
m it grows much slower tharg, namely not at all. We
rewrite the little-Oh notation in formal notation. Specifi-
cally, f = o(g) is equivalent to

DEFINITION. Let f andg be functions fronR™ to R+.
Thenf = O(g) if f = O(g) andg = O(f).

Note that in big-Oh notation, we can always increase the
constants andn, without changing the truth value of the
statement. We can therefore rewrite the big-Theta state-
ment using the larger of the two constantnd the larger
of the two constants,. Hence,f = O(g) is equivalent to

Ve >03ng >0Vz > ng [f(z) < cg(x)].
Je > 03ng > 0V > ng [f(x) < cg(x)Ag(z) < cf(z)].

Similarly, f = w(g) is equivalent to

Here we can further simplify by rewriting the two inequal-
ities by a single oneig(z) < f(z) < cg(z). Just for
practice, we also write the negation in formal notation.
The statemenf # ©(f) is equivalent to

Ve > 03ng >0V >ng [f(x) > %g(x)]

In words, no matter how small our positive constaris,
there always exists a constamg such that beyond that
constantf(x) is larger thary(x) overc. Equivalently, no
matter how big our constants, there always exists a con-
stantn, such that beyond that constayitx) is larger than

c timesg(x). We can thus simplify the formal statement
by substituting f (z) > cg(z)] for the inequality.

Ve > 0Vng > 03z > ng [cg(z) < f(x)Vef(z) < g(z)].

Because the two inequalities are connected by a logical or,
we cannot simply combine them. We could by negating it
first, =(1g(z) < f(z) < cg(z)), but this is hardly easier

to read.

Big-Omega notation. Complementary to the big-Oh
notation, we have

DEFINITION. Let f andg be functions fronR™ to R+.
Thenf = Q(g) if g = O(f).

In formal notation,f = Q(g) is equivalent to

de > 03ng > O0Vz > ng [f(z) > cg(x)].

We may think of big-Oh like a less-than-or-equal-to for
functions, and big-Omega as the complementary greater-
than-or-equal-to. Just as we have= y iff + < y and

x >y, we havef = ©(g) iff f = O(g)andf = Q(g).

Little-oh and little-omega notation. For completeness,
we add notation that corresponds to the strict less-than and
greater-than relations.

28

10 Inference p q r]l(p=a A (g=7) = (@=7)
T T T T T T T T

: . : _— . T T F T F F T F
In this section, we discuss the application of logic to prov-

) S T F T F F T T T
ing theorems. In principle, every proof should be re-

. ; . . . T F F F F T T F
ducible to a sequence of simple logical deductions. While F T T T T T T T
this is not practical for human consumption, there have F T F T F F T T
beetn major strides toward that goal in computerized proof FF T T T T T T
Systems. F F F T T T T T

Modus ponens. This is an example ofirect inference Table 12: The truth table for reasoning by transitivity.

the cornerstone of logical arguments.

PRINCIPLE OFCONTRAPOSITION The statements
p = q and—q = —p are equivalent, and so a proof of one
is a proof of the other.

PRINCIPLE OFMODUS PONENS Fromp andp = g,
we may conclude.

We read this as a recipe to proyeFirst we provep, then .
we prove thap implies ¢, and finally we conclude. Let We have seen a truth table that shows the equivalence of

us take a look at Table 11 to be sure. We see that modusthe two statements earlier, in Section 8. Let us look at an

example.
P a|ll A =9) = q
rrtrT T T CLAIM. If n is a positive integer witm? > 25 then
T F| TF F T F n> 5.
F T| FF T T T
F F| FF T T F

PROOFE The statemenp is thatn is a positive integer
Table 11: The truth table for modus ponens. whose square is larger thah. The statementis thatn is
larger thanb. We could argue directly but then we would

ponens is indeed a tautology, that is, it is always true. Ev- Need to know something about talking square roots. In-

By monotonicity of multiplication, we have

Other methods of direct inference. There are many n? < bn < 5.5 < 25.

other direct proof principles, all easy to verify. Some are

straighforward re-interpretations of logical formulasdan Now, by transitivity of the smaller-than-or-equal-to rela
others use logical equivalences we have learned abouttion, we have:? < 25. Thus—gq implies—p.
Here are but a few:

pandg then pAg; Example: Chinese remainders. Another instructive
porg then pVg; example is a result we have seen in Section 6h.@ndn
be relative prime, positive integers. We map each integer

or—p then p=gq; . i . .
¢ P p=d in Z,,, to the pair of remainders, that is, for< = < mn

~gandp then p 7 g we definef (z) = (z mod m, x mod n).
p=gqgandg=p then p< ¢
p=qandg=r then p&r CHINESE REMAINDER THEOREM. If = # v both be-

The last principle is perhaps more interesting than the oth- 1019 ©0Zmy, thenf(z) # f(y).

ers because it is the only one among the six that is not an

equivalence; see Table 12. PROOFE We use again the indirect approach by contrapo-
sition. Assumef(z) = f(y). Then

Contrapositive. This is the first example of aimdirect xmodm = ymodm;
inferencemethod.

x mod n y mod n.

29

Hence,

(x—y)modm = 0
0.

(x —y) mod n

Thereforex—y is a multiple of bothm andn. Hence{z—
y) mod mn = 0 and therefore: mod mn = y mod mn,
which contradicts that # y in Z,,,,,.

Reduction to Absurdity. Another powerful indirect
proof technique is by contradiction.

PRINCIPLE OFREDUCTION TOABSURDITY. If from
assumingp and —-¢ we can deriver as well as—r then
pP=4q.

Herer can be any statement. Often we use a statement
that is always true (or always false) so that we only need to
derive—r (orr) fromp and—gq. Let us take a look at Table
13. As with all the proof methods, it is best to see exam-

p q v |((pAog) = (rAT) = (p=4q)
T T T F T F T T
T T F F T F T T
T F T T F F T F
T F F T F F T F
F T T F T F T T
F T F F T F T T
F F T F T F T T
F F F F T F T T

Table 13: The truth table for the reduction to absurdity.

CLAIM. /5 is irrational.

PrROOFE Assume the square root 6&fis rational, that is,
there exist integers: andn such thaty/5 = . Squaring
the two sides, we get

or, equivalentlypn? = m2. Butm? has an even number
of prime factors, namely each factor twice, while? has
an odd number of prime factors, namélyogether with an
even number of prime factors faf. Hencepn? = m? is
not possible, a contradiction.

We take a look at the logic structure of this proof. Let

p be the statement tha1’52 = 5 andgq the statement that
V5 is irrational. Thus-g is the statement that5 = 2.
From assuming and —¢, we deriver, that is the state-
ment5n2 = m?2. But we also have-r, because each in-
teger has a uniqgue decomposition into prime factors. We
thus derived- and—r. But this cannot be true. Using the
Principle of Reduction to Absurdity, we conclude that
impliesq. By modus ponens, assumipgivesq.

Summary. We have learned that theorems are tautolo-
gies and there are different ways to prove them. As ap-
plications of logic rules we have discussed direct methods
(Principle of Modus Ponens) and indirect methods (Prin-
ciple of Contrapositive and Principle of Reduction to Ab-
surdity).

ples. There are many and a large variety because different

principles are combined, or made more complicated, etc.

A real numbern is ra-

m

Example: irrational numbers.
tional if there are integersn andn such thatu
andirrational otherwise. The set of rational numbers is
denoted a€). For any two different rational numbers,
u < w, we can always find a third that lies strictly be-
tween them. For example,df = % then

u—+w
2

ml + nk
nl

lies halfway between andw. This property is sometimes
expressed by saying the rational numbersdmesen the
set of real numbers. How do we know that not all real
numbers are rational?

[

30

Third Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is February 23.

Question 1. (20 = 10+ 10 points). (Problem 3.1-6 in our
textbook). Show that @ ¢ is equivalenttqp A —q) Vv
(=p A q). State the corresponding relation in terms of
sets and set operations.

Question 2. (20 = 10 + 10 points). (Problem 3.2-14 in
our textbook). Let:, y, z be variables ang, ¢ logical
statements that depend on one variable.

(a) Are the following two compound logical state-
ments equivalent?

1. (Fz eR [px)) A3y R [q(y)]);
2. 3z e R [p(z) A gq(2)].
(Justify your answer.)
(b) Are the following two compound logical state-
ments equivalent?
1. (FzeR [p)]) vV (Ey e R [q(y)]);
2. 3z e R [p(z) Vq(2)].

(Justify your answer.)

Question 3. (20 points). (Problem 3.3-6 in our textbook).
Is the statement = ¢ equivalent to the statement
—-p = —q? (If yes, why? If no, why not?)

Question 4. (20 points). (Problem 3.3-14 in our text-
book). Prove that there is no largest prime number.
In other words, for every prime number there is an-
other, larger prime number.

31

IV INDUCTION

This is a general purpose proof technique that works in sobotip fashion. Knowing that a statement is true for a
collection of instances, we argue that it is also true forw imstance, which we then add to the collection. Repeatiizg th
step, we establish the statement for a countable collection

11 Mathematical Induction

12 Recursion

13 Growth Rates

14 Solving Recurrence Relations
Homework Assignments

32

11 Mathematical Induction

In philosophydeductionis the process of taking a general

statement and applying it to a specific instance. For exam-

ple: all students must do homework, and | am a student;
therefore, | must do homework. In contrastductionis

the process of creating a general statement from observa-

tions. For example: all cars | have owned need to be re-
paired at some point; therefore, all cars will need to be
repaired at some point. A similar concept is used in math-
ematics to prove that a statement is true for all integers.
To distinguish it from the less specific philosophical no-
tion, we call itmathematical inductiof which we will
introduce two forms. We begin by considering an example
from Section 4, showing that the idea behind Mathemati-
cal Induction is a familiar one.

Euclid’s Division Theorem. We find the smallest coun-
terexample in order to prove the following theorem.

EucLID’s DIVISION THEOREM. Lettingn > 1, for
every non-negative integen there are unique integets
and0 < r < n such thatn = ng + .

PrROOF Assume the opposite, that is, there is a non-
negative integern for which no suchy andr exist. We
choose the smallest sugh Note thatn cannot be smaller
thann, else we havg = 0 andr = m, andm cannot be
equal ton, else we havg = 1 andr = 0. It follows that
m’ = m — n is a positive integer less than. Thus, there
exist integerg’ and0 < »’ < n such thatn’ = n¢’ +1’.

If we addn on both sides, we obtain = (¢’ + 1)n + r'.

If we takeq = ¢’ + 1 andr = 1/, we getm = nq + r,
with 0 < r < n. Thus, by the Principle of Reduction to
Absurdity, such integerg andr exist.

Let p(k) be the statement that there exist integeasd
0 < r < nwith &k = ng + r. Then, the above proof can
be summarized by

p(m —n) A=p(m) = p(m) A —p(m).

This is the contradiction that impliesp(m) cannot be
true. We now focus on the statemeiitn — n) = p(m).
This is the idea of Mathematical Induction which bypasses
the construction of a contradiction.

Example: sum of integers. We consider the familiar
problem of summing the first positive integers. Recall
that (n+1) _ n(n+l)

2

2

33

CLAIM. Foralln >0, we have}_" i = ("J7).

PROOF. First, we note thad_;_,i = 0 = (3). Now, we
assume inductively that for > 0, we have

If we addn on both sides, we obtain

(2)

(n—1)n
2

Lo
2

whichis &t — ("*1) Thus, by the Principle of Math-

ematical Induction,

n

- 09

=0

for all non-negative integers.

To analyze why this proof is correct, we letk) be the
statement that the claim is true for= k. Forn = 1 we
havep(1) A [p(1) = p(2)]. Hence, we gei(2) by Modus
Ponens. We can see that this continues:

p(1) Alp(1) = p(2)] hence p(2);
p(2) A[p(2) = p(3)] hence p(3);
p(n—=1)Alp(n—1) = p(n)] hence p(n);

Thus,p(ng) andp(n — 1) = p(n) for all n > ng implies
p(n) forall n > nyg.

The weak form. We formalize the proof technique into

the first, weak form of the principle. The vast majority of
applications of Mathematical Induction use this particula
form.

MATHEMATICAL INDUCTION (WEAK FORM). If the
statemenp(ny) is true, and the statememtn—1) = p(n)
is true for alln > ng, thenp(n) is true for all integers
n > ng.

To write a proof using the weak form of Mathematical In-
duction, we thus take the following four steps: it should
have the following components:

Base Casep(ng) is true.

Inductive Hypothesisp(n — 1) is true.
Inductive Step:p(n — 1) = p(n).
Inductive Conclusionyp(n) for all n > ny.

Very often but not always, the inductive step is the most
difficult part of the proof. In practice, we usually sketch

the inductive proof, only spelling out the portions that are
not obvious.

Example: sum of powers of two. If we can guess the
closed form expression for a finite sum, it is often easy to
use induction to prove that it is correct, if it is.

CLAIM. For all integers: > 1, we have) " | 27! =
2m —1.

PrROOFE We prove the claim by the weak form of the Prin-
ciple of Mathematical Induction. We observe that the
equality holds whem = 1 becausey.!_,2i"! = 1 =

21 — 1. Assume inductively that the claim holds for- 1.
We get ton by adding2”~! on both sides:

n n—1
221’71 — 221'71 _|_2n71
=1 1=1
— (277,—1 _ 1) + 2n—l
= 2" -1

Here, we use the inductive assumption to go from the first
to the second line. Thus, by the Principle of Mathematical
Induction,y"" , 2~ =27 — 1foralln > 1.

The strong form. Sometimes it is not enough to use the
validity of p(n — 1) to derivep(n). Indeed, we have(n —
2) available angh(n — 3) and so on. Why not use them?

MATHEMATICAL INDUCTION (STRONG FORM). If the
statemenp(ny) is true and the statementng) A p(ng +
1)A -~ Ap(n—1) = p(n)is true for alln > ny, then
p(n) is true for all integers: > ny.

Notice that the strong form of the Principle of Mathemat-
ical Induction implies the weak form.

Example: prime factor decomposition. We use the
strong form to prove that every integer has a decompo-
sition into prime factors.

34

CLAIM. Every integem > 2 is the product of prime
numbers.

PrROOFE We know that is a prime number and thus also
a product of prime numbers. Suppose now that we know
that every positive number less thais a product of prime
numbers. Then, ifi is a prime number we are done. Oth-
erwise,n is not a prime number. By definition of prime
number, we can write it is the product of two smaller pos-
itive integers,n = a - b. By our supposition, both and

b are products of prime numbers. The product,b, is
obtained by merging the two products, which is again a
product of prime numbers. Therefore, by the strong form
of the Principle of Mathematical Induction, every integer
n > 2is a product of prime numbers.

We have used an even stronger statement before,
namely that the decomposition into prime factors is
unigue. We can use the Reduction to Absurdity to prove
unigueness. Suppossds the smallest positive integer that
has two different decompositions. Let> 2 be the small-
est prime factor in the two decompositions. It does not be-
long to the other decomposition, else we could cancel the
two occurrences ofi and get a smaller integer with two
different decompositions. Clearhy,mod a = 0. Further-
more,r; = b; mod a # 0 for each prime factob; in the
other decomposition af. We have

(H bi> mod a
(H ri> mod a.

Since all the; are smaller than anda is a prime number,
the latter product can only be zero if one or thes zero.

But this contradicts that all thig are prime numbers larger
thana. We thus conclude that every integer larger than one
has a unique decomposition into prime factors.

n mod a

Summary. Mathematical Induction is a tool to prove
that a property is true for all positive integers. We used
Modus Ponens to prove the weak as well as the strong
form of the Principle of Mathematical Induction.

12 Recursion is an iterative process in which we alternate the payment
of a constant sum with the accumulation of interest. The

We now describe how recurrence relations arise from re- itération ends when the entire loan is payed off. Suppose
cursive algorithms, and begin to look at ways of solving 4o iS the initial amount of your loany is your monthly
them. We have just learned one method that can some-Payment, ang is the annual interest payment rate. What
times be used to solve such a relation, namely Mathemat-IS the amount you owe aftermonths? We can express it
ical Induction. In fact, we can think of recursion as back- N terms of the amount owed after— 1 months:
wards induction. T(n) = (1 n %) T(n—1) —m.

This is a recurrence relation, and figuring out how much
o YOu owe is the same as solving the recurrence relation.
The number that we are most interested injs2, where
ng is the number of months it takes to dBtn,) = 0.
Instead of attacking this question directly, let us look at a
more abstract, mathematical setting.

The towers of Hanoi. Recurrence relations naturally
arise in the analysis of the towers of Hanoi problem. Her
we have three pegs|, B, C, and initially n disks atA,
sorted from large to small; see Figure 10. The task is to
move then disks fromA to C, one by one, without ever
placing a larger disk onto a smaller disk. The following

Iterating the recursion. Consider the following recur-
rence relation,

Tn) = rT(n—1)+a,
wherer anda are some fixed real numbers. For example,
[) we could set = 1+ 5 anda = —m to get the recurrence
< < = that describes how much money you owe. After replacing
A B c T(n) by rT'(n — 1) + a, we may take another step and

replacel'(n—1) by rT'(n—2)+ato getl'(n) = r(rT(n—
Figure 10: We have a sorted stack of disks4aand useB for 2) + a) + a. Iterating like this, we get
temporary storage to move one disk at a tim&€toWe needB
to avoid any inversions among the disks. T(n) = rT'(n—1)+a
= PT(n—2)+ra+a
three steps solve this problem: = PT(n—-3)+r2a+ra+a

e recursively move: — 1 disks fromA to B; ne1l

e move then-th disk fromA to C; = "T0)+a) r.

e recursively mover — 1 disks fromB to C. =0

The first term on the right hand side is easy, namély

When we move disks from one peg to another, we use the times the initial condition, say'(0) = b. The second term
third peg to help. For the main task, we uBeto help. IS asum, which we now turn into a nicer form.
For the first step, we exchange the rolesandC, and
for the third step, we exchange the rolesband B. The
number of moves is given by the solution to the recurrence
relation

Geometric series. The sequence of terms inside a sum

of the form$7"" | + is referred to as geometric series

If » = 1 then this sum is equal ta. To find a similarly

M) = 2M(n—1)+1, easy expression for o.ther valuesrofwe expand both the
sum and its-fold multiple:

with initial condition M (0) = 0. We may use induction to n—1

show thath (n) = 2" — 1. St o= Pt gt
=0
n—1

Loan payments. Another example in which recurrence - Z P Pl a2 ggnlggn

relations naturally arise is the repayment of loans. This

35

Subtracting the second line from the first, we get

n—1

(1—7‘)27” = 0 —
=0
and thereforéy " " = L="". Now, this allows us to
rewrite the solution to the recurrence as
1—pn
rb+a ! ,
1—1r

T(n)

whereb = T'(0) andr # 1. Let us consider the possible
scenarios:

Case 1. r=0.ThenT(n)=aforalln.

Case 2. 0 < r < 1. Then,lim, o ™ = 0. There-
fore,lim,, oo T'(n) = 7%
r"—1

1—r"

Case 3. r > 1. The factors™ of b and=— of a both
grow with growingn. For positive values ofi and
b, we can expect’'(n) = 0 for a negative value of.
Multiplying with »—1, we get"b(r—1)+ar™—a =
0 or, equivalently;™ (br — b + a) = a. Dividing by
br — b+ a, we getr" = —5—, and taking the
logarithm to the base, we get

- oo [—%
"= &r br—b+a)’

For positive values of andb, we take the logarithm
of a positive number smaller than one. The solution
is a negative number.

We note that the loan example falls into Case 3, with
1+ & >1,b= Ay, anda = —m. Hence, we are now
in a position to find out after how many months it takes to
pay back the loan, namely

lo n
gT m_AO% :

This number is well defined as long as > Aq {5, which

no

For the constant functiofi(n) = r, we have

T(n)

n—1
r"T(0) + Z rg(n — i)
=0

r"T(0) + i " g(i).
i=0

We see that ifj(n) = «a, then we have the recurrence we
used above. We consider the example:) = 27'(n —
1) + ninwhichr = 2 andg(i) = i. Hence,

n—1

2"T(0) + >
=0

1 n—1 .

2"T(0) + 5, > a2l

=0

It is not difficult to find a closed form expression for the
sum. Indeed, it is the special case fo= 2 of the follow-
ing result.

CLAIM. Forz # 1, we have

n

. nx
E 1 =
i=1

"2 (n—1)2"t + 2
(1—2)? '

PROOFE One way to prove the relation is by induction.
Writing R(n) for the right hand side of the relation, we
have R(1) = z, which shows that the claimed relation
holds forn = 1. To make the step from — 1 to n, we
need to show thak(n — 1) + 2™ = R(n). It takes but a
few algebraic manipulations to show that this is indeed the
case.

Summary. Today, we introduced recurrence relations.
To find the solution, we often have to defifi¢n) in terms

of T'(ng) rather tharl’(n — 1). We also saw that differ-
ent recurrences can have the same general form. Knowing

means your monthly payment should exceed the monthly this will help us to solve new recurrences that are similar
interest payment. It better happen, else the amount youto others that we have already seen.

owe grows and the day in which the loan will be payed off
will never arrive.

First-order linear recurrences. The above is an exam-

ple of a more general class of recurrence relations, namely

thefirst-order linear recurrencethat are of the form

f)T(n—1) +g(n).

T(n)

36

13 Growth Rates of two from one level to the next. After dividing, n
times, we arrive at size one. This implies that there are

How does the time to iterate through a recursive algorithm NIy 1 + log, n levels. Similarly, the work at each level
grow with the size of the input? We answer this question decreases by akfactor of two from one level to the next.
for two algorithms, one for searching and the other for ASSumingn = 2%, we get
sorting. In both case, we find the answer by solving a n
recurrence relation. T(n) = n+t 9 too+241

= 2P 4okl 4ol 4 90

Binary Search. We begin by considering a familiar al- ok+l 1.

gorithm, binary search. Suppose we have a sorted array,,
A[l..n], and we wish to find a particular item, Starting
in the middle, we ask whether= A[(n + 1)/2]? Ifitis,

encel’'(n) =2n — 1.

we are done. If not, we have cut the problem in half. We work work
give a more detailed description in pseudo-code. level #nodes size per per
node level
l=1; r=n; 1 1 n n n
whilel<rdo m=(+r)/2;
i f x=A[m]thenprint(m);exit 2 1 ni2 ni2 n/2
el seif z < Aim]thenr=m -1,
el seifa:>A[m]thenl:m+1 3 1 n/a n/a n/a
endi f
endwhi | e. 4 1 n/g n/g nis

Assumingn = 2% — 1, there ar@*~! — 1 items to the left
and to the right of the middle. Léf(n) be the number
of times we check whethédr< r. We check once at the
beginning, forn = 2F — 1 items, and then some number

Figure 11: The recursion tree for the relation in Equation (1

of times for half the items. In total, we have Merge Sort. Next, we consider the problem of sorting a
list of n items. We assume the items are stored in unsorted
Tn) = {T(”Tl) +1 ifn>2 order in an arrayA[l..n]. The list is sorted if it consists
1 if n=1. of only one item. If there are two or more items then we
sort the firstn/2 items and the last/2 items and finally
In each iterationk decreases by one and we @g&in) = merge the two sorted lists. We provide the pseudo-code
k+1. Sincek = log,(n+1), this givesI'(n) = 14log, n. below. We call the function witld = 1 andr = n.

We could verify this by induction.
voi d MERGESORT(Y, 1)

if l<rthenm=({+r)/2;

A similar recurrence relation. Let us consider another MERGESORT((, m);
example, without specific algorithm. Suppose we solve a MERGESORT(m + 1,7);
problem of size: by first solving one problem of size/2 MERGE(, m,)

and then doinge units of additional work. Assuming is endi f .

a power of2, we get the following recurrence relation:
We merge the two sorted lists by scanning them from left
T(n) = {T(%) +n ifn>2; (1) to right, usingn comparisons. It is convenient to relocate
0 if n=1. both lists from A to another arrayB, and to add a so-
called stopper after each sublist. These are items that are
Figure 11 visualizes the computation by drawing a node larger than all given items. In other words, we assume the
for each level of the recursion. Even though the sequencetwo lists are stored iB[¢..m] and B[m + 2..r + 1], with
of nodes forms a path, we call this thecursion treeof B[m + 1] = B[r + 2] = co. When we scan the two lists,
the computation. The problem size decreases by a factorwe move the items back td, one at a time.

37

voi d MERGE(¢, m,) e T(n)=0(n)ifa<2;

;:ré}fj—zﬁ'ﬁ)t Z;O e T'(n)=0(nlogn) if a = 2;
- _ logy, a i
i f Bli] < B[j]then A[k] = Bli]; i =i+ 1; e T(n)=0(n=")if a>2.
else Alk|=BJ[j]; j=7+1 . . .
endi f In the next lecture, we will generalize this result further
endf or . so it includes our finding that binary search takes only a

logarithmic number of comparisons. We will also see a

Assumen = 2* so that the sublists are always of the same Justification of the three cases.
length. The total number of comparisons is then

2T(2) +n ifn>2; Summary. Today, we looked at growth rates. We saw
T(n) = 0 if =1 that binary search grows logarithmically with respect to
o the input size, and merge sort grows at a rate of order

To analyze this recurrence, we look at its recursion tree. nlog, n. We also discovered a pattern in a class recur-
rence relations.

Recursion Tree. We begin with a list of lengtt, from
which we create two shorter lists of lengtli2 each. After
sorting the shorter lists recursively, we useomparisons
to merge them. In Figure 12, we show how much work is
done on the first four levels of the recursion. In this ex-

work work

level #nodes size per per

node level
1 1 n n n
2 2 n/2 n/2 n
3 4 n/4 n/4 n
4 8 n/8 n/8 n

Figure 12: The recursion tree for the merge sort algorithm.

ample, there are units of work per level, and + log, n
levels in the tree. Thus, sorting with the merge sort algo-
rithm takesT'(n) = nlog, n + n comparisons. You can
verify this using Mathematical Induction.

Unifying the findings. We have seen several examples
today, and we now generalize what we have found.

CLAIM. Leta > 1 be an integer and a non-negative
real number. Letl'(n) be defined for integers that are
powers of2 by

n if n > 92
T(n) = al(§)+n ?fn_Z,
d if n=1.

Then we have the following:

38

14 Solving Recurrence Relations

Solving recurrence relations is a difficult business and
there is no catch all method. However, many relations aris-

ing in practice are simple and can be solved with moderate

effort.

A few functions. A solution to a recurrence relation
is generally given in terms of a function, eg(n) =
nlog,n, or a class of similar functions, ed’(n)
O(nlog, n). Itis therefore useful to get a feeling for some
of the most common functions that occur. By plotting the
graphs, as in Figure 13, we get an initial picture. Here we

see a sequence of progressively faster growing functions:

constant, logarithmic, linear, and exponential. However,

o = N WA OO N
| | | | | | | |
t

Figure 13: The graphs of a small set of functiorf$x)
f(z) =logy x, f(z) =z, f(z) = 2.

1,

MASTERTHEOREM. Leta > 1 andb > 1 be integers
andc > 0 andd > 0 real numbers. Lef'(n) be defined
for integers that are powers bhy

{

Then we have the following:

if
if

n>1
n=1.

al (%) +n°

T(n) d

e T(n)=0(n)if log,a < ¢
e T(n)=0O(nlogn) if logya = ¢;
o T(n) = 0O(n'®) if log,a > c.

This behavior can be explained by recalling the formula
for a geometric seriegr® + ... +r" 1) A = 1="" A, and
focusing on the magnitude of the constant factorfFor

0 < r < 1, the sum is roughl, the first term, for- = 1,

the sum isz, the number of terms, and for> 1, the sum

is roughlyr™—1 A, the last term.

Let us consider again the recursion tree and, in partic-
ular, the total work at itg-th level, starting withi = 0 at
the root. There are’ nodes and the work at each node is
($7)¢. The work at the-th level is therefore

“(5)

There arel + log;, n levels, and the total work is the sum
over the levels. This sum is a geometric series, with factor
r = . Itistherefore dominated by the first termrit< 1,

all terms are the same if = 0, and it is dominated by
the last term ifr > 1. To distinguish between the three
cases, we take the logarithm@gfwhich is negative, zero,

positive ifr < 1,7 = 1,r > 1. Itis convenient to take the

i
ne

n

bi

bic”

such plots can be confusing because they depend on th%garithm to the basis. This way we get

scale. For example, the exponential functigfy) = 27,
grows a lot faster than the quadratic functigity) = 2,
but this would not be obvious if we only look at a small
portion of the plane like in Figure 13.

Three regimes. In a recurrence relation, we distinguish
between thehomogeneoupart, the recursive terms, and
theinhomogeneoupart, the work that occurs. The solu-
tion of depends on the relative size of the two, exhibiting
qualitatively different behavior if one dominates the athe
or the two are in balance. Recurrence relations that exhibit

this three-regime behavior are so common that it seems.

worthwhile to study this behavior in more detail. We sum-
marize the findings.

39

log, b% log;, a — logy, b°

log, a — c.

We haver < 1 iff log,a < ¢, In which case the dom-
inating term in the series ia“. We haver 1 iff
log, a = ¢, in which case the total work ig° log, n. We
haver > 1 iff log, a > ¢, in which case the dominating
termisd - a'°% ™ = d - nl°% @, This explains the three
cases in the theorem.

There are extensions of this result that discuss the cases
in whichn is not a lower o, we have floors and ceilings
in the relation,a andb are not integers, etc. The general
behavior of the solution remains the same.

Using induction. Once we know (or feel) what the solu-
tion to a recurrence relation is, we can often use induction
to verify. Here is a particular relation defined for integers
that are powers of:

{

To get a feeling for the solution, we group nodes with
equal work together. We get once, 5 once, § twice,

g three times ¢ five times, etc. These are the Fibonacci
numbers, which grow exponentially, with basis equal to
the golden ratio, which is roughly.6. On the other hand,
the work shrinks exponentially, with basts Hence, we
have a geometric series with factor roughlg, which is

less than one. The dominating term is therefore the first,
and we would guess that the solution is some constant

timesn. We can prove this by induction.

T(5)+T(§)+n if
1 if

n>1
n=1.

T(n)

CLAIM. There exists a positive constaatsuch that
T(n) <cn.

PROOF Forn = 1, we haveT'(1) 1. Hence, the
claimed inequality is true provided > 1. Using the
strong form of Mathematical Induction, we get

n

T(2)+T()+n

n n
c—+c—+n

2 4
)n

3¢

4
This is at mostn provided% + 1 < cor, equivalently,
c> 4.

n

4

T(n)

—+1

The inductive proof not only verified what we thought

STEP 3. Split the set intaS, the items smaller than the
median of the medians, arld the items larger than
the median of the medians.

STEP4. Lets = |S|. If s < k—1then return thék — s)-
smallest item inL. If s = k& — 1 then return the
median of the medians. ¥ > k£ — 1 then return the
k-smallest item inS.

The algorithm is recursive, computing the median of
roughly ¢ medians in Step 2, and then computing an item
eitherinL orin .S. To prove that the algorithm terminates,
we need to show that the sets considered recursively get
strictly smaller. This is easy as longass large but tricky

for smalln. We ignore these difficulties.

0 0O ® 00O
0 0O d 00O
(OO @ O O Q|
O 0O F O O O
00O O 000

Figure 14: The upper left shaded region consists of itemdlema
than the median of the medians. Symmetrically, the lowehtrig
shaded region consists of items larger than the median of the
medians. Both contain about three tenth of all items.

To get a handle on the running time, we need to estimate
how much smaller than the setsS and . are. Consider
Figure 14. In one iteration of the algorithm, we eliminate
either all items smaller or all items larger than the median
of the medians. The number of such items is at least the
number in one of the two shaded regions, each containing
roughly?l’—g items. Hence, the recurrence relation describ-
ing the running time of the algorithm is

might be the case, but it also gave us the smallest constant,

¢ =4, forwhichT'(n) < enis true.

Finding the median. Similar recurrence relations arise
in practice. A classic example is an algorithm for finding
the k-smallest of an unsorted set ofitems. We assume
the items are all different. A particularly interesting eas
is the middle item, which is called theedian For odd

n, this is thek-smallest withk = 241, For evenn, we
setk equal to either the floor or the ceiling @fg—l The

algorithm takes four steps to find tihesmallest item.

STEP1. Partition the set into groups of sizend find the
median in each group.

STeEP 2. Find the median of the medians.

40

T(B)+T(2)+n if
no if

n > no

T(n) n S no,

{

for some large enough constant Since + 1 is strictly
less than one, we guess that the solution to this recurrence
relation is agairO(n). This can be verified by induction.

Fourth Homework Assignment

Write the solution to each problem on a single page. The

deadline for handing in solutions is 18 March 2009.

Question 1. (20 = 10 + 10 points).

nt FUNCTION(n)
ifn>0then
n = FUNCTION(|n/a]) + FUNCTION(|n/b])
endi f
returnn.

We can assume thatb > 1, so the algorithm ter-

Question 2. (20 points).

(a) Prove the following claim:
1+74 - +@Bn?=3n+1)=n’

(b) (Problem4.1-11 in our textbook). Find the error
in the following proof that all positive integers
n are equal. Lep(n) be the statement that all
numbers in am-element set of positive integers
are equal. Themp(1) is true. Letn > 2 and
write N for the set ofn first positive integers.
Let N andN" be the sets ot —1 firstandn—1
last integers inV. By p(n — 1), all members of
N’ are equal, and all members &7’ are equal.
Thus, the firstn — 1 elements ofN are equal
and the lasti — 1 elements ofV are equal, and
so all elements ofV are equal. Therefore, all
positive integers are equal.

Recall the Chinese Remain-
der Theorem stated for two positive, relatively prime
moduli, m andn, in Section 7. Assuming this theo-

rem, prove the following generalization by induction
onk.

CLAIM. Let ny,na,...,n; be positive, pairwise
relative prime numbers. Then for every sequence of
integersa; € Z,,, 1 <i < k, the system ok linear
equations,

rmodn; = aj,

has a unique solution i#i, whereN = Hle ;.

Question 3. (20 = 10 + 10 points).

(@) (Problem 4.2-13 in our textbook). Solve the
recurrencel’(n) = 2T(n — 1) + 3™, with
T(0)=1.

(b) (Problem 4.2-17 in our textbook). Solve the re-
currencel’(n) = rT(n—1)4n, with T'(0) = 1.
(Assume that £ 1.)

Question 4. (20 = 7 + 7 + 6 points). Consider the fol-

lowing algorithm segment.

41

minates. In the following questions, let, be the
number of iterations of thehi | e loop.

(a) Find a recurrence relation far,.
(b) Find an explicit formula for,, .
(c) How fast does grow? (big® terms)

Question 5. (20 = 444444444 points). (Problem 4.4-

1 in our textbook). Use the Master Theorem to solve

the following recurrence relations. For each, assume
T(1) = 1 andn is a power of the appropriate integer.

(@ T(n)=8T(%)+n
(b) T'(n) = 8T (%) +n?
() T(n)=3T(%)+n
(d) T(n) =T(%) + 1.

(e) T(n) = 3T(%) +n?

V PROBABILITY

In its simplest form, computing the probability reducesdaiating, namely the lucky outcomes and all possible out@ome
The probability is then the ratio of the two, which is a reahmher between zero and one.

15 Inclusion-Exclusion

16 Conditional Probability

17 Random Variables

18 Probability in Hashing

19 Probability Distributions
Homework Assignments

42

15 Inclusion-Exclusion

Today, we introduce basic concepts in probability theory
and we learn about one of its fundamental principles.

Throwing dice. Consider a simple example of a prob-
abilistic experiment: throwing two dice and counting the
total number of dots. Each die has six sides wiitto 6
dots. The result of a throw is thus a number betw2and
12. There are36 possible outcomes, for each die, which
we draw as the entries of a matrix; see Figure 15.

1 2 3 4 5 6
. 2] 3 4 5| 6 7

3| 4/ 5| 6| 7| 8
2 6/36 o

4/ 5| 6| 7| 8| 9 5/36 o o
8 4136 o o

5/ 6| 7| 8| 9|10 3/36] o
4 2/36 o o
B I I I I e el At N
6 7| 8| 9 10| 11|12 234567 89101112

Figure 15: Left: the two dice give the row and the column index
of the entry in the matrix. Right: the most likely sum7swith
probability % the length of the diagonal divided by the size of
the matrix.

Basic concepts. The set of possible outcomes of an ex-
periment is thesample spacedenoted ag). A possi-
ble outcome is arelementz € Q. A subset of out-
comes is arevenf A C Q. The probability or weight
of an element: is P(z), a real number betweebh and
1. For finite sample spaces, tpeobability of an event is

P(A) =3 pea P(2).

For example, in the two dice experiment, we Set=
{2,3,...,12}. An event could be to throw an even num-
ber. The probabilities of the different outcomes are given
in Figure 15 and we can compute

1+3+5+5+3+1
36

1
P(even 7

More formally, we call a functio® : 2 — R aprobabil-
ity distributionor aprobability measuréf

(i) P(x) > 0foreveryx € Q;

(i) P(AUB) = P(A) + P(B) for all disjoint events
ANB=10;

(i) P(Q) = 1.

43

A common example is theniform probability distribution
defined byP(z) = P(y) forall x,y € €. Clearly, ifQ is
finite then

Al

P(A) 9]

for every eventd C Q.

Union of non-disjoint events. Suppose we throw two
dice and ask what is the probability that the outcome is
even or larger thafl. Write A for the event of having an
even number and for the event that the number exceeds
7. ThenP(A) = 3, P(B) = 32, andP(ANB) = 4.
The question asks for the probability of the union of
and B. We get this by adding the probabilities dfand

B and then subtracting the probability of the intersection,

because it has been added twice,

P(AUB) P(A)+ P(B)— P(ANB),
5 3

which gives% + 15— 35 = % If we had three events,

then we would subtract all pairwise intersections and add
back in the triplewise intersection, that is,
P(AUBUCQ) P(A)+ P(B) + P(C)
—P(ANB)—P(ANC)
—-P(BNC)+P(ANBNC).

Principle of inclusion-exclusion. We can generalize the
idea of compensating by subtractingit@vents.

PIE THEOREM (FOR PROBABILITY). The probability
of the union ofn events is

PQJAH

= > (DM P4, NN A,
k=1
where the second sum is over all subsets effents.

PROOF Letx be an elementit);"_, A; andH the subset

of {1,2,...,n} such thatr € A, iff i € H. The contri-
bution of z to the sum isP(z) for each odd subset off
and—P(z) for each even subset éf. If we includel) as

an even subset, then the number of odd and even subsets is
the same. We can prove this using the Binomial Theorem:

-1 = §<—1>i(?).

But in the claimed equation, we do not account for the
empty set. Hence, there is a surplus of one odd subset and
therefore a net contribution d?(z). This is true for every
element. The PIE Theorem for Probability follows.

Checking hats. Suppose: people get their hats returned

x € M hasn choices for its image, the choices are in-

in random order. What is the chance that at least one getsdependent, and therefore the number of functions’ts

the correct hat? Lefl; be the event that persargets the
correct hat. Then

Similarly,

(n—k)!

P(Ai]ﬂ... o

ﬂAik)

The event that at least one person gets the correct hat
the union of thed;. Writing P = P(U?:1 A;) for its
probability, we have

k

DD P4, N LN AL

o)

P

k

>t

i=1

n

k

(n—k)!
n!

1
1-— =
2+

1

g—...:lz

a.
Recall from Taylor expansion of real-valued functions that
e’ =1+z+2%/2+23/3'+ Hence,

P 1—e1=06...

Inclusion-exclusion for counting. The principle of
inclusion-exclusion generally applies to measuring thing
Counting elements in finite sets is an example.

PIE THEOREM (FOR COUNTING). For a collection of
n finite sets, we have

Ul
=1

where the second sum is over all subsets efents.

n

= Y DR AL 0L N,

k=1

The only difference to the PIE Theorem for probability is
we count one for each element,instead ofP(x).

Counting surjective functions. Let M and N be finite
sets, andn = | M| andn = | N| their cardinalities. Count-
ing the functions of the fornf : M — N is easy. Each

44

How many of these functions are surjective? To answer
this question, letV = {y1, s, ...,y } and letA; be the
set of functions in whichy; is not the image of any ele-
ment in M. Writing A for the set of all functions and

for the set of all surjective functions, we have

isWe already knowA|. Similarly, |4;| = (n — 1)™. Fur-
thermore, the size of the intersectionkobf the A; is

We can now use inclusion-exclusion to get the number of
functions in the union, namely,

| 4l
i=1

To get the number of surjective functions, we subtract the
size of the union from the total number of functions,

n

_ Z(_l)kJrl

k=1

n

k) (n— k)™

Form < n, this number should b@é, and form = n, it
should ben!. Check whether this is indeed the case for
small values ofrn andn.

16 Conditional Probability Q

If we have partial information, this effectively shrinkseth
available sample space and changes the probabilities. We
begin with an example.

Monty Hall show. The setting is a game show in which
a prize is hidden behind one of three curtains. Call the

curtainsX, Y, andZ. You can win the prize by guessing gigure 17: Assumings, the probability ofA is represented by
the right curtain. the fraction of the shaded regioR, that is dark shaded} N B.

STeEP 1. You choose a curtain.

SinceP(4 | B) = Z558) = P(A), we have

P(B) — % — P(B]| A).

This leaves two curtains you did not choose, and at least
one of them does not hide the prize. Monty Hall opens this
one curtain and this way demonstrates there is no prize
hidden there. Then he asks whether you would like to

reconsider. Would you? We thus see that independence is symmetric. However,

it fails to be an equivalence relation because it is neither

STEP 2A. You stick to your initial choice. reflexive not transitive. Combining the definition of condi-
_ . tional probability with the condition of independence, we
STEP2B. You change to the other available curtain. get a formula for the probability of two events occurring

o at the same time.
Perhaps surprisingly, Stepgds the better strategy. As

shown in Figure 16, it doubles your chance to win the

prize PRODUCT PRINCIPLE FORINDEPENDENTPROB. If A

andB are independenttheR(A N B) = P(A) - P(B).
2A

Trial processes. In many situations, a probabilistic ex-
periment is repeated, possibly many times. We call this a
trial process It is independenif the i-th trial is not influ-
enced by the outcomes of the preceding 1 trials, that

is,

Figure 16: Suppose the prize is behind curtdinThe chance of PA; |Ain...NnA;1) = P(A),
winning improves from in 2a to 2 in 2B. _
for each.

An example is picking a coin from an bag that contains
one nickel, two dimes, and two quarters. We have an in-
dependent trial process if we always return the coin before
the next draw. The choice we get a quarter is theregore
each time. The chance to pick the quarter three times in a
P(ANB) row is thereforg(2)® = 5= = 0.064. More generally, we

P(B) have the

Formalization. We are given a sample space, and
consider two eventsd, B C . The conditional prob-
ability of evenA given eventB is

P(A|B) =

We illustrate this definition in Figure 17. If we know that
the outcome of the experiment is i, the chance that it is
also inA is the fraction ofB occupied byA N B. We say
A and B areindependenif knowing B does not change
the probability ofA, that is,

INDEPENDENTTRIAL THEOREM. In an independent
trial process, the probability of a sequence of outcomes,
a1,a2,...,an, 1S P(ay) - P(az) - ... P(ay).

Trial processes that are not independent are generally
P(A|B) = P(A). more complicated and we need more elaborate tools to

45

compute the probabilities. A useful such tool is the tree
diagram as shown in Figure 18 for the coin picking exper-
iment in which we do not replace the picked coins.

1/30
2/30
2/30
1/30
1/30
2/30
1/30
2/30
2/30
2/30
2/30
2/30
1/30
2/30
2/30
2/30
1/30

2/30

Figure 18: What is the probability of picking the nickel irrdle
trials?

Medical test example. Probabilities can be counterintu-
itive, even in situations in which they are important. Con-
sider a medical test for a diseage, The test mostly gives
the right answer, but not always. Say its false-negative rat
is 1% and its false-positive rate &%, that is,

P(y|D) = 0.99;
P(n|D) = 0.01;
P(y|-D) = 0.2
P(n|-D) = 0.98.

Assume that the chance you have dise2ss only one in

a thousand, that is?(D) = 0.001. Now you take the test
and the outcome is positive. What is the chance that you
have the disease? In other words, whaPid | y)? As
illustrated in Figure 19,

P(DNy) 0.00099
P(y) 0.02097

This is clearly a case in which you want to get a second
opinion before starting a treatment.

P(D1y)

0.047.. ..

46

0.0009¢

0.00001

0.0199¢

0.9790:

Figure 19: Tree diagram showing the conditional probaeasitn
the medical test question.

Summary. Today, we learned about conditional proba-
bilities and what it means for two events to be indepen-
dent. The Product Principle can be used to compute the
probability of the intersection of two events, if they are in
dependent. We also learned about trial processes and tree
diagrams to analyze them.

17 Random Variables ;

1
A random variablds a real-value function on the sample @ f() =P (A)
spaceX : Q — R. An example is the total number of dots
at rolling two dice, or the number of heads in a sequence 0

of ten coin flips. X

Figure 20: The distribution function of a random variableds-

Bernoulli trial process. Recall that an independent trial ~ Structed by mapping a real numbe, to the probability of the
process is a sequence of identical experiments in which the€vent that the random variable takes on the vaiue

outcome of each experiment is independent of the preced-
ing outcomes. A particular example is tBernoulli trial

i L) — (M\pk(1_\n—k i
processn which the probability of success is the same at thatis, P(X' = k) = (k)p (1=p)""". The corresponding

distribution function maps to the probability of having:

each trial: successes, that ig(k) = (7)p*(1 — p)"~*. We get the
P(success = p; expected number of successes by summing ovér. all
P(failure) = 1-—p. n
_ | E(X) =) kf(k)
If we do a sequence of trials, we may defin& equal to k=0
the number of successes. HenQes the space of possi- n n
ble outcomes for a sequenceroffials or, equivalently, the = k<k>pk(1 —p)" "
set of binary strings of length. What is the probability k=0

of getting exactlyk successes? By the Independent Trial " /n—1
o . _ Z kfl(l)nfk
Theorem, the probability of having a sequencé:afuc- = np E—1/P p
cesses followed by — k failures isp* (1 —p)™~*. Now we kzll
just have tp multiply with the number of binary sequences . n—1 k(1 — pyr—kl
that containk successes. p)P p :
k=0

BINOMIAL PROBABILITY LEMMA. The probability of The sumin the last line is equal tp + (1 — p))" ! = 1.
having exactlyk successes in a sequencerotrials is Hence, the expected number of successeés is np.

P(X =k) = (R)p* (L -p)" "

As a sanity check, we make sure that the probabilities add Lin€arity of expectation. Note that the expected value
up to one. Using the Binomial Theorem, get of X can also be obtained by summing over all possible

outcomes, that is,
Sree=n = 3 ())ra-ort BX) = Y XEPL)
k=0 k=0 seQ

which is equal top + (1 — p))” = 1. Because of this This leads to an easier way of computing the expected
connection, the probabilities in the Bernoulli trial prese value. To this end, we exploit the following important

are called thdinomial probabilities property of expectations.

Expectation. The function that assigns to each € R LINEARITY OF EXPECTATION. Let X, Y : Q — R be
the probability thatX = z; is the distribution func- two random variables. Then

tion of X, denoted agf : R — [0,1]; see Figure 20.

More formally, f(z;) = P(A), whered = X~ 1(x;). () EX+Y)=EX)+E(Y),

The expected valuef the random variable i&(X) = (i) E(cX) = cE(X), for every real number.

As an example, consider the Bernoulli trial process in The proof should be obvious. Is it? We use the prop-
which X counts the successes in a sequence tfals, erty to recompute the expected number of successes in

47

a Bernoulli trial process. Foi from 1 to n, let X; be
the expected number of successes inittie trial. Since
there is only one-th trial, this is the same as the proba-
bility of having a success, that i%(X;) = p. Further-
more, X = X; + X5 + ... + X,,. Repeated applica-
tion of property (i) of the Linearity of Expectation gives
E(X) =", E(X;) = np, same as before.

Indication. The Linearity of Expectation does not de-
pend on the independence of the trials; it is also trug if
andY are dependent. We illustrate this property by going
back to our hat checking experiment. First, we introduce
a definition. Given an event, the correspondingjcator
random variablas 1 if the event happens aridbtherwise.
Thus,E(X) =P(X =1).

In the hat checking experiment, we retusrhats in a
random order. LeX be the number of correctly returned
hats. We proved that the probability of returning at least
one hat correctly isP(X > 1) = 1 —e ! = 06...

To compute the expectation from the definition, we would
have to determine the probability of returning exadtly
hats corrects, for each < k£ < n. Alternatively, we

whereX; is the expected number of assignments inithe

th step. We gefX; = 1 iff the i-th item, A[i], is smaller
than all preceding items. The chance for this to happen is
one ini. Hence,

E(X) E(X;)

. <.

M- 1:
[

| =

N
Il
-

The result of this sum is referred to as theéh harmonic
numberH, = 1+3+1+...+1. Wecanusg =Inn

to show that the:-th harmonic number is approximately
the natural logarithm of.. More preciselyln(n + 1) <
H, <1+ Inn.

Waiting for success. Suppose we have again a Bernoulli
trial process, but this time we end it the first time we hit a
success. Defining’ equal to the index of the first success,
we are interested in the expected valdg X). We have
P(X =1i) = (1 —p)i~!pfor eachi. As a sanity check,
we make sure that the probabilities add up to one. Indeed,

can compute the expectation by decomposing the random

variable, X = X; + Xy + ... + X,,, whereX; is the
expected value that theth hat is returned correctly. Now,
X; is an indicator variable wittE(X;) % Note that
the X; are not independent. For example, if the fitst 1
hats are returned correctly then so is théh hat. In spite
of the dependence, we have

In words, the expected number of correctly returned hats
is one.

Example: computing the minimum. Consider the fol-
lowing algorithm for computing the minimum among
items stored in a linear array.

min = A[1];
fori=2tondo

i f min > Ali]t hen min = A[i] endi f
endi f .

dP(X=i) = Y (1-p'p
=1 i=1
- 1
Prr—a—ypy

Using the Linearity of Expectation, we get a similar sum
for the expected number of trials. First, we note that
Z;‘;O jad L There are many ways to derive this

— -2
equation, for example, by index transformation. Hence,

E(X) =) iP(X =i)
=0
p - . i
= E;Z(l—l))
1—p (1-(1-p)*

which is equal to..

Summary. Today, we have learned about random vari-
able and their expected values. Very importantly, the ex-

Suppose the items are disti_nct and the array stores them inpectation of a sum of random variables is equal to the sum
a random sequence. By this we mean that each permutay the expectations. We used this to analyze the Bernoulli

tion of then items is equally likely. LetX be the number
of assignments tovin. We haveX = X1+ Xo+.. .+ X,

48

trial process.

18 Probability in Hashing

A popular method for storing a collection of items to sup-
port fast look-up is hashing them into a table. Trouble
starts when we attempt to store more than one item in the
same slot. The efficiency of all hashing algorithms de-
pends on how often this happens.

Birthday paradox. We begin with an instructive ques-
tion about birthdays. Consider a groupropeople. Each
person claims one particular day of the year as her birth-
day. For simplicity, we assume that nobody claims Febru-
ary 29 and we talk about years consisting:cf 365 days
only. Assume also that each day is equally likely for each
person. In other words,

P(person is born on dayj)

k?

for all 7 and allj. Collecting the birthdays of the peo-
ple, we get a multiset o days during the year. We are
interested in the evend, that at least two people have the
same birthday. Its probability is one minus the probability
that then birthdays are distinct, that is,

P(A) = 1-P(A)
_ ok kot k—n+1
- ko k k
k!
- 1_(l<:—n)!k:”'

The probability ofA surpasses one half whenexceeds
21, which is perhaps surprisingly early. See Figure 21 for
a display how the probability grows with increasing

0

0 10 20 30 40

Figure 21: The probability that at least two people in a grotip
n share the same birthday.

Hashing. The basic mechanism in hashing is the same
as in the assignment of birthdays. We havéems and
map each to one of slots. We assume the choices of
slots are independent. éollisionis the event that an item

49

is mapped to a slot that already stores an item. A possible
resolution of a collision adds the item at the end of a linked
list that belongs to the slot, but there are others. We are
interested in the following quantities:

1. the expected number of items mapping to same slot;
2. the expected number of empty slots;

3. the expected number of collisions;

4. the expected number of items needed to filkallots.

Different hashing algorithms use different mechanisms for
resolving collisions. The above quantities have a lot to say
about the relative merits of these algorithms.

Items per slot. Since all slots are the same and none is
more preferred than any other, we might as well determine
the expected number of items that are mapped tolslot
Consider the corresponding indicator random variable,

v

The number of items mapped to slbis thereforeX =
X1+ X2+ ...+ X,. The expected value of; is 1, for
eachi. Hence, the expected number of items mapped to
slot1 is

1 ifitem ¢ is mapped to slot;
0 otherwise

But this is obvious in any case. As mentioned earlier, the
expected number of items is the same for every slot. Writ-
ing Y; for the number of items mapped to slgtwe have

Y =", Y; = n. Similarly,

E(Y) = Y EY;) = n.

Jj=1

Since the expectations are the same for all slots, we there-
fore haveE(Y;) = %, for eachy.

Empty slots. The probability that sloj remains empty
after mapping alh items is(1 — %)”. Defining

o |

we thus getE(X;) = (1 — ¢)n. The number of empty
slots isX = X; + X5 + ... + Xi. Hence, the expected

1 if slot j remains empty
0 otherwise

number of empty slots is

E(X) = iE(Xj) = k(l—%)n.

Fork = n, we havdim, (1 — 2)" = e~ = 0.367...
In this case, we can expect about a third of the slots to
remain empty.

Collisions. The number of collisions can be determined
from the number of empty slots. Writing for the num-
ber of empty slots, as before, we hdve X items hashed
without collision and therefore a total of — & + X col-
lisions. Writing Z for the number of collisions, we thus
get

E(Z) = n—k+E(X)
n—k—i—k(l—%)n.

Fork = n, we getlim, ... n(1 — £)" = 2. In words,
about a third of the items cause a collision.

Filling all slots. How many items do we need to map
to thek slots until they store at least one item each? For
obvious reasons, this question is sometimes referred to as
the coupons collector problem. The crucial idea here is
to defineX; equal to the number of items it takes to go
from j — 1 to j filled slots. Filling thej-th slot is an
infinite Bernoulli process with success probability equal

top = L Last lecture, we learned that the ex-
pected number of trials until the first succes%isHence,
E(X;) = k_—’;ﬂ The number of items needed to fill all

slotsisX = X; + X5 + ...+ Xi. The expected number
is therefore

k
E(X) = Y E(X))
j=1
k
k
- j;k—j+1
k

= k21
= kHy.

As mentioned during last lecture, this is approximately
times the natural logarithm d@f. More precisely, we have
kln(k+1) < kHp < k(1 +1nk).

50

19 Probability Distributions

Although individual events based on probability are un-

zero or ten heads when we flip a coin ten times. To express
how surprised we should be we measure the spread of the
distribution. Let us first determine how close we expect a

predictable, we can predict patterns when we repeat theandom variable to be to its expectatidfi X — E(X)).

experiment many times. Today, we will look at the pattern

By linearity of expectation, we have

that emerges from independent random variables, such as

flipping a coin.

Coin flipping. Suppose we have a fair coin, that is, the
probability of getting head is precisely one half and the
same is true for getting tail. LeX’ count the times we get
head. If we flip the coim times, the probability that we

getk heads is
n n
b - ()

Figure 22 visualizes this distribution in the form of a his-
togram forn = 10. Recall that thelistribution function
maps every possible outcome to its probabilifyk) =

P(X

P(X = k). This makes sense when we have a discrete

domain. For a continuous domain, we consider ¢he
mulative distribution functiorthat gives the probability
of the outcome to be within a particular range, that is,

Jo_, f(x)de = P(a < X <0).

30 T

25 +

20 +

15 +

10 +

.05 +

[-

0 1 2 3 4 5 6 7 8 9 10

Figure 22: The histogram that the shows the probability ¢f ge
ting 0, 1, ..., 10 heads when flipping a coin ten times.

Variance. Now that we have an idea of what a distribu-
tion function looks like, we wish to find succinct ways of
describing it. First, we note that= F(X) is the expected
value of our random variable. It is also referred to as the
meanor the averageof the distribution. In the example
above, whereX is the number of heads in ten coin flips,
we haveu = 5. However, we would not be surprised if we
had four or six heads but we might be surprised if we had

51

E(X —p) = 0.

Hence, this measurement is not a good description of the
distribution. Instead, we use the expectation of the square
of the difference to the mean. Specifically, traianceof
arandom variablé&l', denoted a¥ (X)), is the expectation

E ((X — p)?). Thestandard deviatioris the square root

of the variance, that is7(X) = V(X)'2. If X, is the
number of heads we see in four coin flips, thes 2 and

— E(X)-B() =

1= p

L (=22 +4-(-1)*+4-1* +2%],

V(X4) 6

which is equal ta.. For comparison, leX; be the number
of heads that we see in one coin flip. Thes- % and

1 1, 1,
3 (0—5) +(—5))

V(X1)

which is equal to one quarter. Here, we notice that the
variance of four flips is the sum of the variances for four
individual flips. However, this property does not hold in
general.

Variance for independent random variables. Let X
andY be independent random variables. Then, the prop-
erty that we observed above is true.

ADDITIVITY OF VARIANCE. If X andY are indepen-
dent random variables thén(X +Y) = V(X) + V(Y).

We first prove the following more technical result.

LEMMA. If X andY are independent random variables
thenE(XY) = E(X)E(Y).

PROOF By definition of expectationF (X)E(Y) is the
product of >, z; P(X = z;) and), y; P(Y = y;).
Pushing the summations to the right, we get

BXEY) = 33 wwP(X =x)P(Y =)

y])a

> 2 P(X = 2;)P(Y

0]

where z;; = x;y;. Finally, we use the independence
of the random variables(andY to see thatP(X =
x;))P(Y =vy;) = P(XY = z;). With this, we conclude
that E(X)E(Y) = E(XY).

Now, we are ready to prove the Additivity of Variance,
thatis,V(X +Y) = V(X) + V(Y) wheneverX andY
are independent.

PrROOF By definition of variance, we have

V(X +Y)

E(X+Y - E(X+Y))?).

The right hand side is the expectation (O — ux)? +
2(X — pux)(Y — py) + (Y — py), wherepx and py

STANDARD LIMIT THEOREM. The probability of the
number of heads being between andbo from the mean
goes to

1 e q
— e 2 ¥
V 27 /;:a
as the number of flips goes to infinity.
For example, if we hava00 coin flips, theny = 50,

V(X) = 25, ando = 5. It follows that the probability
of having betweer5 and55 heads is about.68.

Summary. We used a histogram to visualize the proba-

are the expected values of the two random variables. With Pility that we will havek heads i flips of a coin. We

this, we get
V(X+Y) = E((X—px)’)+E(Y —py)?)
= V(X)+V(Y),
as claimed.

Normal distribution. If we continue to increase the
number of coin flips, then the distribution function ap-
proaches theormal distribution

1 2

x
= ez

This is the limit of the distribution as the number of coin
flips approaches infinity. For a large number of trials, the

Figure 23: The normal distribution with mean= 0 and stan-
dard deviationo = 1. The probability that the random variable
is between-o ando is 0.68, between-20 and2c is 0.955, and
between—3c and3c is 0.997.

normal distribution can be used to approximate the prob-

ability of the sum being betweenandb standard devia-
tions from the expected value.

52

also used the meap, the standard deviatiom,, and the
variance,V (X)), to describe the distribution of outcomes.
As n approaches infinity, we see that this distribution ap-
proaches the normal distribution.

Fifth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is 8 April 2009.

Question 1. (20 points). Use the Principle of Inclusion-
Exclusion to count the surjective functiofis M —
N, where where both sets are finite with = |M|
andn = |N]|.

Question 2. (20 = 6 + 7 + 7 points). (Problems 5.3-1 to
3 in our textbook). Suppose you have a fair coin, one
in which a flip gives head with probability one half
and tail with probability one half. You do three flips
with this coin.

(&) What s the probability that two flips in are row
are heads, given that there is an even number of
heads?

(b) Is the event that two flips in a row are heads
independent of the event that there is an even
number of heads?

(c) Is the event of getting at most one tail indepen-
dent of the event that not all flips are identical?

Question 3. (20 points). (Problem 5.4-16 in our text-
book). Suppose you have two nickels, two dimes,
and two quarters in a bag. You draw three coins from
the bag, without replacement. What is the expected
amount of money you get?

Question 4. (20 = 6 + 7 + 7 points). (Problem 5.5-8
in our textbook). Suppose you hashitems intok
locations.

(@) What is the probability that alt items has to
different locations?

(b) What is the probability that theth item gives
the first collision?

(c) What is the expected number of items you hash
until the first collision?

Question 5. (20 = 7 4+ 7 + 6 points). In the program-
ming language of your choice, write the following
two functions:

(@) GETMEAN
(a) GETVARIANCE

53

These methods should take an array of values as input
(the experimental results for each trial) and return a
floating point number. Then, flip a coin 20 times (or
simulate this on the computer) and use these methods
to compute the mean and the variance of your trials.
Are the results what you would have expected?

Question 6. (20 = 10 + 10 points). (Problems 5.7-8 and

14 in our textbook).

(a) Show that ifX andY are independent, ard
andc are constant, the — b andY — ¢ are
independent.

(b) Given a random variabl& , how does the vari-
ance ofc X relate to that ofY ?

VI GRAPHS

A graph is a set of vertices with pairs connected by edgesinfbemation in a particular graph is contained in the choice
of vertices that are connected by edges. This simple cortdrinbstructure is surprisingly versatile and convenignt
models situations in which the relationship between parimportant.

20 Trees
21 Tours
22 Matching

23 Planar Graphs
Homework Assignments

54

20 Trees B does not knowD. Thus, we have a triangle in the com-
plement graph sincel, B, and D mutually do not know

Graphs can be used to model and solve many problems.ach other. For the second case, assumeAhatows B,

Trees are special graphs. Today, we look at various prop- D+ F'» and possibly other people. If any two of the three
erties of graphs as well as of trees. know each other then we have a triangle in the graph. Oth-

erwise, we have a triangle in the complement graph since

B, D, andF mutually do not know each other.
Party problem. Suppose we choose six people at ran-
dom from a party. We call the peoplethroughF'. Then,
one of the following must be true: Simple graphs. Inthe above problem, we used graphsto
help us find the solution. Asimple) graphG = (V, E),
I. three of the people mutually know each other; or is a finite set of verticesy, together with a set of edges,

II. three of the people mutually do not know each other. £ Where an edge is an unordered pair of vertices. Two
vertices connected by an edge adjacentand they are

We reformulate this claim using a graph representing the pelghborsof each che_r. Furthermore, We say the edge is
situation. We draw six vertices, one for each person, and |nC|dent_to the vertices it connects. Sometimes we refer to
the vertices as nodes and the edges as arcs. For example,
Figure 25 shows theomplete graplof five vertices, which

we denote ad(5. This graph is complete since we cannot
add any more edges. subgraptofa graph? = (V, E) is

we draw an edge between two vertices if the two people
know each other. We call thisssmple graph Thecomple-
ment graphconsists of the same six vertices but contains
an edge between two vertices iff the graph does not have
an edge between them. Property | says the graph contains
a triangle and Property Il says the complement graph con-
tains a triangle. In Figure 24, we see two graphs on six
vertices. On the left, the graph contains a triangle and on
the right, the complement graph contains a triangle. We
can now reformulate the above claim.

Figure 25: The complete graph of five vertices. It {fgs = 10
edges.

agraphHd = (W, F) forwhichW C V andF C E. For
example, aliquein G is a subgraph that is a complete
graph if considered by itself. With this terminology, the
Party Theorem says that a graph on six vertices contains a

Figure 24: The two cases we consider in the party problem. cligue of three vertices or its complement graph contains
such a clique.

PARTY THEOREM. If @ simple graph on six vertices connectivity. Suppose we have a graph where the nodes
does not have a triangle then the complement graph onye cities and an edg, b} exists if there is a train that
the same six vertices has a triangle. goes between these two cities. Where can you go if you

start at a cityz? We need some definitions to study this

PROOF. We distinguish the case in which knows two guestion. Awalk is an alternating sequence of vertices
or fewer people from the case in whichknows three o and edges such that

more people. For the first case, we assume thaossibly
knowsC and E but nobody else. 14 knows both and”
and E know each other, then we have a triangle. Other-
wise, consideB, D, F'. If they do not all mutually know 2. each edge connects the vertex that precedes the edge
each other, then without loss of generality, we can say that with the vertex that succeeds the edge.

1. the sequence starts and ends with a vertex;

55

Furthermore, gathis a walk such that no vertex appears =~ SPANNING TREE THEOREM. Every finite connected
twice. If there exists a walk from to b, then we know graph contains a spanning tree.

that there also exists a path franto b. Indeed, if a vertex

x appears twice, we can shorten the walk by removing all PRooF If there is a cycle in the graph, remove one edge
edges and vertices between the two copies as well as onef the cycle. Repeat until no cycles remain.
copy of the vertex:. If the walk is finite, we get a path

o . . There are a number of different algorithms for con-
after finitely many operations as described.

structing a spanning tree. We may, for example, begin
with a vertexuy € V and grow a tree by adding an edge

CLAIM. Having a connecting path is an equivalence re- and a vertex in each round. This is called Prim’s Algo-

lation on the vertices of a graph.

rithm.
PROOFE Let a, b, c be three vertices of a grap. The
relation is reflexive becauge) is a path from to a. The W= {uo}; F=0; X =V~ {uo};
relation is symmetric because reversing a path frotmb whi | e 3 edge{w,z} with w € W andz € X do
gives a path fronb to a. Finally, the relation is transitive movez from X to W; add{w, z} to I’
because concatenating a path freto b with a path from endwhi | e;
bto c gives a path from to c. i f V=W then (W, F)is spanning tree

. . el se (V, E) is not connected
A graph isconnectedf there is a path between every endi f .

pair of its vertices. Aconnected componeota not neces-
sarily connected graph is a maximal connected subgraph.
Equivalently, a connected component is an equivalence
class of vertices together with the edges between them.

At the end of this algorithm, we have determinedifis
connected. If it is connected, we have found a spanning
tree. Otherwise(W, F) is a spanning tree of the con-
nected component that contaimg

Cycles and trees. A closed walkis a walk that starts and
ends at the same vertex.dcleis a closed walk in which

no vertices are repeated. Alternatively, we can say that a
cycle is a path in which the start and the end vertices are
the same. Areeis a connected graph that does not have
any cycles.

Rooted trees. In many situations, it is convenient to
have the edges of a tree directed, from one endpoint to the
other. If we have an edge froato b, we calla a parentof

b andb achild of a. A particularly important such struc-
ture is obtained if the edges are directed such that each
vertex has at most one parent. In a tree, the number of
edges is one less than the number of vertices. This implies
that each vertex has exactly one parent, except for one, the
root, which has no parent. Holding the root and letting

1. there is exactly one path between every pair of ver- gravity work on the rest of the graph, we get a picture like
tices: in Figure 26 in which the root is drawn at the top. The

PROPERTIES OFTREES If T'= (V, E) is a tree withn
vertices andn edges, then we have the following proper-
ties:

2. removing an edge disconnects the tree;
3. the number of edgesis = n — 1;

4. there exists at least one vertex that has precisely one
neighboring vertex.

Spanning trees. Sometimes the whole graph gives us
more information than we need or can process. In such a
case, we may reduce the graph while preserving the prop-
erty of interest. For example, if we are interested in con-
nectivity, we may remove as many edges as we can while

preserving the connectivity of the graph. This leads to the directions of the edges are now determined, namely from
concept of aspanning tregthat is, a subgraph that con- top to bottom, leading away from the root. Each maximal
tains all vertices and is itself a tree. directed path starts at the root and ends bad, that is,

Figure 26: The top vertex is the root and the square vertices a
the leaves of the rooted tree.

56

a vertex without children. Rooted trees are often used to
model or to support a search process. We start at the root
and choose an outgoing edge to direct the search to one of
the available subtrees. We then recurse, treating the new
vertex like the root. Repeating this step, we eventually ar-
rive at a leaf of the rooted tree. Similarly, we can give a
recursive definition of a rooted tree. We phrase this defi-
nition of the case of &inary tree that is, a rooted tree in
which every vertex has at most two children. We thus talk
about a left child and a right child.

e an empty graph is a binary tree;

e a vertex (the root) with a binary tree as left subtree
and a binary tree as right subtree is a binary tree.

While uncommon in Mathematics, recursive definitions
are suggestive of algorithms and thus common in Com-
puter Science.

Summary. Today, we looked at graphs, subgraphs,
trees, and rooted trees. We used Prim’s algorithm to find a
spanning tree (if one exists).

57

21 Tours walk continues until we have no more edge to leave the last
vertex. Since each vertex has even degree, this last vertex

In this section, we study different ways to traverse a graph. €a&n only beuo. The walk¥; is thus necessarily closed.
We begin with tours that traverse every edge exactly once If itis not a Eulerian tour then there are still some unused

and end with tours that visit every vertex exactly once. ~ €dges left. Consider a connected component of the graph
consisting of these unused edges and the incident vertices.

Itis connected and every vertex has even degreeu{ be
Bridges of Konigsberg. The Pregel River goes through a vertex of this component that also lies¥dfy. Construct
the city of Konigsberg, separating it into two large island a closed walk}¥/;, starting fromu;. Now concatenatd/y
and two pieces of mainland. There are seven bridges con-and¥; to form a longer closed walk. Repeating this step
necting the islands with the mainland, as sketched in Fig- a finite number of times gives a Eulerian tour.

ure 27. lIs it possible to find a closed walk that traverses All four vertices of the graph modeling the seven

bridges in Kdnigsberg have odd degree. It follows there

f \C is no closed walk that traverses each bridge exactly once.
Hamiltonian graphs. Consider thgpentagon dodecahe-
/g dron, the Platonic solid bounded by twelve faces, each a

regular pentagon. Drawing the corners as vertices and the

sides of the pentagons as edges, we get a graph as in Fig-
ure 28. Recall that a cycle in a graph is a closed walk

Figure 27: Left: schematic picture of the bridges connertire
islands with the mainland in Konigsberg. Right: repreatoh
by a graph with four vertices and seven edges.

each bridge exactly once? We can formalize this question
by drawing a graph with four vertices, one for each island
and each piece of the mainland. We have an edge for each
bridge, as in Figure 27 on the right. The graph hasti-
edgesand is therefore not simple. More generally, we may
also allowloopsthat are edges starting and ending at the
same vertex. AEulerian tourof such a graph is a closed
walk that contains each edge exactly once.

Eulerian graphs. A graph isEulerianif it permits a Eu-

lerian tour. To decide whether or not a graph is Eulerian, it

suffices to look at the local neighborhood of each vertex.

The degreeof a vertex is the number of incident edges.

Here we count a loop twice because it touches a vertex at

both ends. Figure 28: A drawing of a pentagon dodecahedron in which the
lengths of the edges are not in scale.

EULERIAN TOUR THEOREM. A graph is Eulerian iff it
is connected and every vertex has even degree. in which no vertex is repeated. Wamiltonian cycleis a
closed walk that visits every vertex exactly once. As indi-
PrROOE If a graphis Eulerian then itis connected and each cated by the shading of some edges in Figure 28, the graph
vertex has even degree just because we enter a vertex thef the pentagon dodecahedron has a Hamiltonian cycle. A
same number of times we leave it. The other direction is graph isHamiltonianif it permits a Hamiltonian cycle.
more difficult to prove. We do it constructively. Given a Deciding whether or not a graph is Hamiltonian turns out
vertexug € V, we construct a maximal wall},, that to be much more difficult than deciding whether or not it
leaves each vertex at a yet unused edge. Starting, #be is Eulerian.

58

A sufficient condition. The more edges we have, the
more likely it is to find a Hamiltonian cycle. It turns out
that beyond some number of edges incident to each vertex,
there is always a Hamiltonian cycle.

DIRAC’'S THEOREM. If GGis a simple graph with > 3
vertices and each vertex has degree at I§agtenG is
Hamiltonian.

PROOF AssumeG has a maximal set of edges without
being Hamiltonian. Letting: andy be two vertices not
adjacent inz, we thus have a path fromto y that passes
through all vertices of the graph. We index the vertices
along this path, withi; = = andu,, = y, as in Figure
29. Now suppose is adjacent to a verten; 1. If y is

X L) 4 U+ th-1 Y

Figure 29: Ifx is adjacent tas;+1 andy is adjacent tas; then
we get a Hamiltonian cycle by adding these two edges to the pat
and removing the edge connectingto w1 .

adjacent tas; then we have a Hamiltonian cycle as shown
in Figure 29. Thus, for every neighbey, ; of z, we have

a non-neighbow; of y. Butz has at least; neighbors
which implies thaty has at least; non-neighbors. The
degree of; is therefore at mogtn — 1) — 5 = § — 1. This

2
contradicts the assumption and thus implies the claim.

The proof of Dirac's Theorem uses a common tech-

nigue, namely assuming an extreme counterexample and
deriving a contradiction from this assumption.

Summary. We have learned about Eulerian graphs
which have closed walks traversing each edge exactly
once. Such graphs are easily recognized, simply by check-
ing the degree of all the vertices. We have also learned
about Hamiltonian graphs which have closed walks visit-
ing each vertex exactly once. Such graphs are difficult to
recognize. More specifically, there is no known algorithm
that can decide whether a graphrofertices is Hamilto-
nian in time that is at most polynomial in

59

22 Matching that are not incident to edges M. If we have an aug-
menting path, we can switch its edges to increase the size

Most of us are familiar with the difficult problem of find- ~ ©f the matching, as in Figure 31.

ing a good match. We use graphs to study the problem
from a global perspective. S

Marriage problem. Suppose there are boys andn od

girls and we have a like-dislike relation between them. ’
Representing this data in a square matrix, as in Figure 30)
on the left, we write anX’ whenever the corresponding d
boy and girl like each other. Alternatively, we may repre- : p
sent the data in form of a graph in which we draw an edge RO '
for each X’ in the matrix; see Figure 30 on the right. This
graph,G = (V, E), is bipatrtite, that is, we can partition

the vertex set af = X U Y such that each edge connects

Figure 31: The solid edges form a matching. The shaded edges
form an augmenting path. Trading its dashed for its solicesdg

a vertex inX with a vertex inY'. The setsX andY” are we increase the size of the matching by one edge. If wesaahd
thepartsof the graph. ¢ and direct the edges, the augmenting path becomes a directed
path connecting to t.
1 2 3 girls n-1n boys girls
1 X | x O
2 | |x &o BERGE S THEOREM. The matching)/ is maximum iff
3 X O—\O there is no augmenting path.
g PrRoOOF Clearly, if there is an augmenting path th&his
S not maximum. Equivalently, it/ is maximum then there

is no augmenting path. Proving the other direction is more
difficult. SupposeVf is not maximum. Then there exists a
n-1 X

n N matchingN with |[N| > |M|. We consider the symmetric
difference obtained by removing the duplicate edges from

Figure 30: The matrix on the left and the bipartite graph an th their union,
right both represent the same data.

M&N = (MUN)—(MNON).

The goal is to marry off the boys and girls based on the Since both sets are matchings, the edge¥/dire vertex-
relation. We formalize this using the bipartite graph rep- disjoint and so are the edges df. It follows that each
resentation. Anatchingis a setM C E of vertex-disjoint connected component of the gragh M @ N) is either an
edges. The matching imaximalif no matching properly alternating path or an alternating cycle. Every alterrgtin
containsM. The matching isnaximunif no matchinghas cycle has the same number of edges frbfrand fromN .
more edges than/. Note that every maximum matching SinceN has more edges thaw, it also contributes more
is maximal but not the other way round. Maximal match- edges to the symmetric difference. Hence, at least one
ings are easy to find, eg. by greedily adding one edge atcomponent has more edges fravnthan fromM/. This is
atime. To construct a maximum matching efficiently, we an augmenting path.
need to know more about the structure of matchings.

Constructing a maximum matching. Berge’s Theorem
Augmenting paths. LetG = (V, E) be abipartite graph ~ suggests we construct a maximum matching iteratively.
with partsX andY andM C E a matching. Analter- Starting with the empty matching/ =), we find an aug-
nating pathalternates between edgesiMi and edges in menting path and increase the size of the matching in each
E — M. An augmenting pattis an alternating path that iteration until no further increase is possible. The number
begins and ends at unmatched vertices, that is, at verticeof iterations is less than the number of vertices. To explain

60

how we find an augmenting path, we add vertieesd¢
to the graph, connectingto all unmatched vertices iX
andt to all unmatched vertices ii. Furthermore, we di-
rect all edges: from to X, from X to Y if the edge is in
E— M, fromY to X if the edge is inM/, and fromY to ¢;

see Figure 31. An augmenting path starts and ends with an

edge inE — M. Prepending an edge frosrand appending

an edge ta, we get a directed path fromto ¢ in the di-
rected graph. Such a path can be found with breadth-first
search, which works by storing active vertices in a queue
and marking vertices that have already been visited. Ini-
tially, s is the only marked vertex and the only vertex in
the queue. In each iteration, we remove the last vertex,

from the end of the queue, mark all unmarked successors

of x, and add these at the front to the queue. We halt the
algorithm whery is added to the queue. If this never hap-

note that|D| = |M|. Furthermore, we observe that
coversall edges inF, that is, each edge has at least one
endpointinD.

We generalize this concept. Given a graphk= (V) E),
avertex covelis a setC’ C V such that each edge i
has at least one endpoint @. It is minimal if it does
not properly contain another vertex cover amihimum
if there is no vertex cover with fewer vertices. Finding a
minimal vertex cover is easy, eg. by greedily removing one
vertex at a time, but finding a minimum vertex cover is a
difficult computational problem for which no polynomial-
time algorithm is known. However, if7 is bipartite, we
can use the maximum matching algorithm to construct a
minimum vertex cover.

pens then there is no augmenting path and the matching KONIG'S THEOREM. If G = (V, E) is bipartite then

is maximum. Otherwise, we extract a path frerno ¢ by
tracing it from the other direction, startingqtadding one
marked vertex at a time.

The breadth-first search algorithm takes constant time
per edge. The number of edges is less thdnwhere
n = |V|. It follows that an augmenting path can be found
in time O(n?). The overall algorithms takes tin@(n?)
to construct a maximum matching.

Vertex covers. Running the algorithm to completion,
we get a maximum matchingy/ C FE. Let Y, contain
all vertices inY” reachable frons and X all vertices inX
from whicht is reachable; see Figure 32. No edgelin

"0
Xo X1 >
\ \ \ | | |
A {y 1
\ | \ \ |
S Yo
tO

Figure 32: Schematic picture of the vertex getconsisting of
the shaded portions of and ofY. The vertices are ordered so
that all edges inV/ are vertical.

connects a vertex iXy with a vertex inYy, else we would
have an augmenting path. Furthermadié, U Yy | < | M|
because each vertex in the union is incident to an edge in
the matching. Letting{; contain the endpoints of the yet
untouched edges i, we setD = X, U Yy U X; and

61

the size of a minimum vertex cover is equal to the size of
a maximum matching.

PROOF. Let X andY be the parts of the graph; C V =

X UY aminimum vertex cover, antf C £ a maximum
matching. ThenM| < |C| becaus&” coversM. Since
M is maximum, there is no augmenting path. It follows
that the sethD C V (as defined above) covers all edges.
SinceC' is minimum, we havéC| < |D| = |M]|, which
implies the claim.

Neighborhood sizes. If the two parts of the bipartite
graph have the same size it is sometimes possible to match
every last vertex. We call a matchimgrfectif |M| =

|X| = |Y]. There is an interesting relationship between
the existence of a perfect matching and the number of
neighbors a set of vertices has. L&tC X and define

its neighborhoodas the setV(S) C Y consisting of all
vertices adjacent to at least one vertexin

HALL'S THEOREM. In a bipartite graptG = (V, E)
with equally large partX andY’, there is a perfect match-
ing iff [N (S)| > |S| foreveryS C X.

PrOOF If all vertices of X' can be matched théiv (.S)| >

|S| simply becauseV(.S) contains all matched vertices in
Y, and possibly more. The other direction is more difficult
to prove. We show thatN(S)| > |S| forall S C X
implies thatX is a minimum vertex cover. By Konig’s
Theorem, there is a matching of the same size, and this
matching necessarily connects to all verticeXin

Let nowC C X UY be a minimum vertex cover and
considerS = X — C. By definition of vertex cover, all

neighbors of vertices it are inY N C. Hence,|S| <
IN(S)| <Y N C|. We therefore have

|C| [CNX|+|CNY]
[CNX|+|9]

ICNX|+|X -C|

AV

which is equal to| X|. But X clearly covers all edges,
which implies|C| = | X|. Hence,X is a minimum vertex
cover, which implies the claim.

Summary. Today, we have defined the marriage prob-
lem as constructing a maximum matching in a bipartite
graph. We have seen that such a matching can be con-
structed in time cubic in the number of vertices. We have
also seen connections between maximum matchings, min-
imum vertex covers, and sizes of neighborhoods.

62

23 Planar Graphs PrRoOOFR Choose a spanning tré&, T') of (V, E). It has
n vertices,|T| = n — 1 edges, and one face. We have

Although we commonly draw a graph in the plane, us- 7 — (n — 1) + 1 = 2, which proves the formula it;
ing tiny circles for the vertices and curves for the edges, a IS @ tree. Otherwise, draw the remaining edges, one at a
graph is a perfectly abstract concept. We now talk about fime. Each edge decomposes one face into two. The num-

constraints on graphs necessary to be able to draw a grapfPer of vertices does not changeincreases by one, ard
in the plane without crossings between the curves. This increases by one. Since the graph satisfies the claimed lin-

question forms a bridge between the abstract and the geo-£ar relation before drawing the edge it satisfies the reiatio
metric study of graphs. also after drawing the edge.

We get bounds on the number of edges and faces, in
terms of the number of vertices, by considermgximally
connectedyraphs for which adding any other edge would
violate planarity. Every face of a maximally connected
planar graph with three or more vertices is necessarily a
triangle, for if there is a face with more than three edges
we can add an edge without crossing any other edge. Let
n > 3 be the number of vertices, as before. Since every
face has three edges and every edge belong to two trian-

_gles, we havey! = 2m. We use this relation to rewrite

'Euler's Formulan —m + 22 = 2 andn — % + ¢ = 2

3. acurve does not pass through a point, unless the cor-and thereforen = 3n — 6 and¢ = 2n — 4. Every planar
responding edge and vertex are incident, in which graph can be completed to a maximally connected planar
case the point is an endpoint of the curve; graph, which implies that it has at most these numbers of

4. two curves are disjoint, unless the corresponding edges and faces.

edges are incident to a common vertex, in which case Note that the sum of vertex degrees is twice the number

the curves share a common endpoint. of edges, and thereforg, deg(u) < 6n — 12. It fol-
lows that every planar graph has a vertex of degree less

than six. We will see uses of this observation in coloring
planar graphs and in proving that they have straight-line
embeddings.

Drawings and embeddings. Let G = (V,E) be a

simple, undirected graph and I&? denote the two-
dimensional real plane. Alrawing maps every vertex
u € V to a pointe(u) in R?, and it maps every edge
uwv € E to a curve with endpoints(u) ande(v); see Fig-

ure 33. The drawing is aambeddingf

1. vertices are mapped to distinct points;
2. edge are mapped to curves without self-intersections

Not every graph can be drawn without crossings between
the curves. The grapfi is planarif it has an embedding
in the plane.

Non-planarity. We can use the consequences of Euler's
Formula to prove that the complete graph of five vertices
and the complete bipartite graph of three plus three ver-
tices are not planar. Consider first;, which is drawn in

Figure 33: Three drawings dk4. From left to right a drawing Figure 34, left. Ithas: = 5 vertices andn = 10 edges,

that is not an embedding, an embedding with one curved edge,
and a straight-line embedding.

Euler's Formula. Think of the plane as an infinite piece

of paper which you cut along the curves with a pair of scis-

sors. Each piece of the paper that remains connected after

the cutting is called dace of the embedding. We write Figure 34: K on the left andK’s 3 on the right.
n = |V|, m = |E|, and{ for the number of faces. Euler’s

Formula is a linear relation between the three numbers. ~ contradicting the upper bound of at m@st—6 = 9 edges
for maximally connected planar graphs. Consider second

EULER’S FORMULA. For an embedding of a connected K3 3, which is drawn in Figure 34, right. It has = 6
graph we haves — m + ¢ = 2. vertices andn = 9 edges. Each cycle has even length,

63

which implies that each face has four or more edges. We Convexity and star-convexity. We call a regiort in the
get4/ < 2m andm < 2n — 4 = 8 after plugging the planeconvexif for all points z,y € S the line segment
inequality into Euler's Formula, again a contradiction. with endpointse andy is contained inS. Figure 35 shows

In a senseKs and K 5 are the quintessential non- examples of regions of either kind. We célistar-convex

planar graphs. Two graphs anemeomorphidf one can

be obtained from the other by a sequence of operations,
each deleting a degrexvertex and merging its two edges
into one or doing the inverse.

KURATOWSKI'S THEOREM. A graphG is planar iff no

subgraph of7 is homeomorphic td(5 or to K5 3.
Figure 35: A convex region on the left and a non-convex star-

. . . . convex region on the right.
The proof of this result is a bit lengthy and omitted. We

now turn to two applications of the structural properties of

planar graphs we have learned if there is a point € S such that for every point € S the

line segment connecting with z is contained inS. The
set of such points is thekernelof S.

Vertex coloring. A vertexk-coloringis amapy : V — Itis not too difficult to show that every pentagon is star-
{1,2,...,k} suchthaty(u) # x(v) whenevew andv are convex: decompose the pentagon using two diagonals and
adjacent. We cal(u) thecolor of the vertexu. For pla- ~ ¢hoosez close to the common endpoint of these diago-

nar graphs, the concept is motivated by coloring countries Nals, as shown in Figure 36. Note however that not every
in a geographic map. We model the problem by replacing hexagon is star-convex.
each country by a vertex and by drawing an edge between
the vertices of neighboring countries. A famous result is
that every planar graph hastecoloring, but proving this
fills the pages of a thick book. Instead, we give a con-
structive argument for the weaker result that every planar
graph has &-coloring. If the graph has five or fewer ver-
tices then we color them directly. Else we perform the
following four steps: Figure 36: A (necessarily) star-convex pentagon and twe non
star-convex hexagons.
Step 1. Remove a vertexx € V with degreek =
deg(u) < 5, together with thé: incident edges.

Step 2. If k = 5 then find two neighbors andw of Straight-line embedding. A straight-line embedding
the removed vertex that are not adjacentand merge maps every (abstract) edge to the straight line segment
them into a single vertex. connecting the images of its two vertices. We prove that

every planar graph has a straight-line embedding using the

fact that it has a vertex of degree at most five. To sim-
plify the construction, we assume that the planar graph

Step 4. Addu back into the graph and assign a color G is maximally connected and we fix the ‘outer’ triangle
that is different from the colors of its neighbors. abe. Furthermore, we observe thatdf has at least four

vertices then it has a vertex of degree at niottat is dif-

Why do we know that verticesandw in Step 2 exist? To ferent froma, b andc. Indeed, the combined degree of

see that five colors suffice, we just need to observe that thea, b, cis atleas. The combined degree of the other 3

at most five neighbors af use up at most four colors. The Vertices is therefore at most. — 19, which implies the

idea of removing a small-degree vertex, recursing for the average is still less thag) as required.

remainder, and adding the vertex back is generally useful.

We show that it can also be used to construct embeddingsSt ep 1. Remove a vertex. € V — {a,b, ¢} with de-

with straight edges. greek = deg(u) < 5, together with the: incident

Step 3. Recursively construct &-coloring of the
smaller graph.

64

edges. Add: — 3 edges to make the graph maximally
connected again.

Step 2. Recursively construct a straight-line embed-
ding of the smaller graph.

Step 3. Remove the addekl — 3 edges and map to
a pointe(u) inside the kernel of thé-gon. Connect
¢(u) with line segments to the vertices of thegon.

Figure 37 illustrates the recursive construction. It would
be fairly straightforward to turn the construction into a re
cursive algorithm, but the numerical quality of the embed-
dings it gives is not great.

recurse l

Figure 37: We fix the outer trianglebc, remove the degree-5
vertexu, recursively construct a straight-line embedding of the
rest, and finally add the vertex back.

65

Sixth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is 22 April 2009.

Question 1. (20 = 5+ 5+ 5 4 5 points). Choose ten of
your friends, and make a graph where the edges rep-
resent two friends being Facebook friends. (Do not
include yourself in the graph). Order your friends al-
phabetically, and label the verticeg vs, . .., v1g re-
spectively. This will be most interesting if all of your
friends know each other. Now, answer the following
guestions about the graph that you drew.

(a) What is the size of the largest clique?

(b) Find the shortest and longest paths fromto
V10-

(c) Which vertex has the highest degree?

(d) Use Prim’s algorithm to find the minimum
spanning tree, and draw that tree.

Question 2. (20 points). (Problem 6.1-14 in our text-
book). Are there graphs with vertices andh — 1
edges and no cycles that are not trees? Give a proof
to justify your answer.

Question 3. (20 points). Call a simple graph with > 3
vertices anOre graphif every pair of non-adjacent
vertices has a combined degree of at leads it true
that every Ore graph is Hamiltonian? Justify your
answer.

Question 4. (20 = 10+ 10 points). (Problems 6.4-12 and
13 in our textbook). Prove or give a counterexample:

(a) Every tree is a bipartite graph.
(b) A bipartite graph has no odd cycles.

Question 5. (20 = 5 + 15 points). Suppose you have
pennies which you arrange flat on a table, without
overlap.

(a) How would you arrange the pennies to max-
imize the number of pennies that touch each
other?

(b) Prove that the number of touching pairs cannot
exceedn.

66

